دانلود پروژه مقاله مدل هاي فازي تحت word

برای دریافت پروژه اینجا کلیک کنید

 دانلود پروژه مقاله مدل هاي فازي تحت word دارای 30 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود پروژه مقاله مدل هاي فازي تحت word   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه دانلود پروژه مقاله مدل هاي فازي تحت word

سرمقاله : مدل های فازی – چه هستند وچرا ؟  
«نظریه مجموعه‌های فازی»  
«منطق فازی»  
منابع  

بخشی از منابع و مراجع پروژه دانلود پروژه مقاله مدل هاي فازي تحت word

[1] L.A. Zadeh, “Fuzzy Sets,” Information and Control, Vol. 8, pp. 338-352,

[2] C.C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controllers,” (parts I and II), IEEE Transactions on Systems, Man, and Cybernetics, Vol. 20, No. 2, pp. 404-435,

[3] “The future is fuzzy,” Newsweek, May

[4] E.H. Mamdani, “Applications of fuzzy algorithms for simple dynamic plant,” Proc. IEE, 121, pp. 1585-1588,

[5] P.M. Larsen, “Industrial Applications of Fuzzy Logic Control,” International Journal of Man, machine Studies, Vol.12, No. 1, pp. 3-10,

[6] T. Takagi, and M. Sugeno, “Fuzzy identification of Systems and its Applications to Modeling and Control,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 15, No. 1, January-February

[7] F. Herrera, and J.L. Verdegay, “Fuzzy Sets and Operations Research: Perspectives,” Fuzzy Sets and Systems, Vol. 90, pp. 207-218,

سرمقاله : مدل های فازی[1] – چه هستند وچرا ؟

(J.C.Bezdek , IEEE Transactions on Fuzzy Systems , Vol. 1 , February 1993 – Edited by P.D.)

مجموعه های فازی درواقع تعمیمی برتئوری مجموعه های قراردادی[2] می باشد که درسال 1965 به عنوان روشی ریاضی برای روشن کردن ابهامات درزندگی روزمره توسط زاده[3] معرفی شد. [1]

ایده اصلی مجموعه های فازی ساده است وبه راحتی می توان آن را دریافت. فرض کنید هنگامی که به چراغ قرمز می رسید باید توصیه ای به یک دانش آموز راننده درباره زمان ترمز کردن بکنید. شما می گویید « در74 فوتی چهارراه ترمزکن » یا توصیه ی شما شبیه به این است « خیلی زود از ترمزها استفاده کن »؟ البته دومی ؛ دستورالعمل اول برای انجام دادن بسیار دقیق است. این نشان می دهد که دقت می تواند بی فایده باشد ، تا زمانی که راه های مبهم وغیر دقیق می توانند تفسیر وانجام گیرند. زبان روزمره مثال دیگری است از استفاده وانتشار ابهامات. بچه ها بسرعت تفسیر وانجام دستورالعمل های فازی را یاد می گیرند. (ساعت 10 به رختخواب برو). همه ما اطلاعات فازی نتایج مبهم واطلاعات غیر دقیق را به خاطر می سپاریم وازآن ها استفاده می کنیم وبه خاطر همین مسئله قادر هستیم تا در موقعیت‌هایی که به یک عنصر تصادفی وابسته است تصمیم گیری کنیم. بنابراین مدل های محاسباتی از سیستم‌های حقیقی باید قادر باشند که عدم قطعیت های آماری وفازی را تشخیص دهند ، مشخص کنند ، تحت کنترل خود درآورند ، تفسیر کنند وازآن استفاده کنند

تفسیر فازی ازاطلاعات یک راه بسیار طبیعی ، مستقیم و خوش‌ظاهر برای فرموله کردن وحل مسائل مختلف است. مجموعه های قراردادی شامل اشیایی است که برای عضویت در ویژگی‌های دقیقی صدق می کنند. مجموعه H که اعداد از6 تا 8 می باشد یک CRISP است ؛ ما می نویسیم   . به طور مشابه H توسط تابع عضویت (MF)[4]  که مطابق زیرتعریف می شود نیز توصیف می گردد

مجموعه H ونمودار  درسمت چپ شکل 1 نشان داده شده اند هرعدد حقیقی r یا درH است یا نیست از آنجا که  کلیه اعداد حقیقی  را به دو نقطه (1،0) می‌برد ، مجموعه Crisp معادل منطق دو مقداره است : هست یا نیست ، روشن یا خاموش ، سیاه یا سفید ، 1 یا 0 . درمنطق مقادیر  مقادیر حقیقت[5] نامیده می شوند، با ارجاع به این پرسش « آیا r درH است؟ » جواب مثبت است اگروتنها اگر   ؛ درغیراین صورت نه

مجموعه دیگرF ازاعداد حقیقی که نزدیک به 7 هستند را درنظر بگیرید ازآنجا که ویژگی «نزدیک به 7» نامعلوم است ، تابع عضویت یکتایی برای F وجود ندارد . به هرحال مدل کننده براساس پتانسیل کاربرد و ویژگی ها F باید تصمیم بگیرد که  چه باشد . ویژگی هایی که برای F به نظرخوب می رسد شامل این موارد است (I) حالت عادی یا طبیعی  (ii) یکنواختی (برای r نزدیکتر به7 ،‌ به 1 نزدیکتراست وبرعکس) و (iii) تقارن (اعدادی که فاصله مساوی از چپ وراست 7 دارند باید عضویت یکسانی داشته باشند)

با توجه به این موارد ضروری هرکدام از توابع نشان داده شده درطرف راست شکل 1 می‌تواند نمایش مناسبی برای F باشد.  گسسته است درحالی  پیوسته است ولی هموارنیست (نمودار مثلثی) یک نفر می تواند به راحتی یک MF برای F بسازد به نحوی که هرعدد عضویت مثبتی در F داشته باشد ولی انتظار نداریم برای اعداد « خیلی دوراز7» برای مثال 2000097 زیاد داشته باشیم! یکی از بزرگترین تفاوت ها بین مجموعه های Crisp ومجموعه‌های فازی این است که اولی همیشه MF یکتایی دارد درحالی که هرمجموعه فازی بی‌نهایت MF دارد که می توانند آن را نشان دهند. این درواقع هم ضعف است وهم قدرت ؛ یکتایی قربانی می شود ، ولی سود پیوسته ای که به خاطر انعطاف پذیری همراه خواهد داشت

مدل فازی را قادر می سازد که با بیشترین سود دریک موقعیت داده شده تطبیق داده شود. درتئوری مجموعه های قراردادی ، مجموعه های اشیایی واقعی برای مثال اعداد در H معادلند و به صورت ایزومورفیک[6] با یک تابع عضویت یکتا مانند  توصیف می شوند. ولی معادل مجموعه ای ، از اشیای واقعی  وجود ندارد. مجموعه های فازی همواره ( وفقط) توابعی هستند از «مجموعه جهانی[7]» به نام X به [] . این مسئله درشکل 2 نشان داده شده است که درواقع مشخص می سازد مجموعه فازی تابع   است از X به [] . همانطور که تعریف شده هرتابع [‌] یک مجموعه فازی است

  تازمانی که این در ریاضیات رسمی درست است ، بسیاری از توابع که دراین زمینه توصیف می‌شوند نمی توانند به طور مناسبی برای تصوریک مجموعه فازی تفسیر شوند . به عبارت دیگر، توابعی که X را به بازه واحد می برند ممکن است مجموعه های فازی باشند ولی تنها زمانی مجموعه فازی می شوند که یک سری ویژگی های غیر دقیق ولی ذاتی ، منطقی وتوصیفی را با اعضای X تطبیق دهند

اولین سؤال و در واقع سؤالی که معمولا درمورد این طرح پرسیده می شود ، مربوط است به رابطه فازی واحتمال . آیا مجموعه های فازی یک مبدل هوشمند برای مدل های آماری است ؟ درواقع نه . شاید یک مثال کمک کند

مثال 1: مجموعه همه آب ها رابه عنوان مجموعه جهانی درنظر بگیرید وهمچنین مجموعه فازی { مایعات قابل آشامیدن }‌=‌L را داریم . فرض کنید شما یک هفته بدون مایعات درصحرا بوده اید وحالا دو بطری A وB دارید. به شما گفته می شود که عضویت (فازی) مایع درون A در L ، 9/0 وهمچنین احتمال اینکه مایع درون B متعلق به L باشد هم 9/0 است. به عبارت دیگر A شامل مایعی است که با درجه عضویت 9/0 قابل شرب است درحالی که B شامل مایعی است که به احتمال 9/0 قابل شرب است . با این جفت بطری مواجه می شوید وباید ازیکی که انتخاب کرده اید بنوشید ، اول کدام را برای نوشیدن انتخاب می کنید ؟ چرا؟ بعلاوه بعداز مشاهده درباره محتوای دو بطری مقدار (محتمل) برای عضویت واحتمال چه می‌باشد؟ [ پاسخ این معما درکلاس بحث می شود ] سؤتفاهم رایج دیگردرباره مدل های فازی این است که آن ها به عنوان جایگزین هایی برای مدل های Crisp (یا احتمالاتی) پیشنهاد می شدند. برای توضیح این مسئله نخست از شکل های 1و2 توجه کنید که هرمجموعه Crisp فازی است ولی نه برعکس . بسیاری از طرح ها که ازایده فازی استفاده می کنند آن را از طریق محاط کردن وجا دادن بکار می برند یعنی ما تلاش می کنیم تا ساختارقراردادی را حفظ کنیم وبه آن اجازه می دهیم تا درخروجی هرزمان که می‌تواند و هرزمان که باید برجسته شود

مثال 2 : وضع ریاضی‌دان اولیه را درنظر بگیرید ، او می دانند که سری تیلور برای تابع حقیقی (زنگی شکل)  در  واگرا است ولی نمی تواند بفهمد چرا ، مخصوصا که f دراین نقاط بی نهایت بار مشتقپذیر است. امروزه به عنوان دانش معمول هر دانش آموز ازتوابع مختلط تابع  دو قطب در  دارد. بنابراین تابع مختلط که محاط شده به وسیله صورت کسر است ، نمی تواند بسط سری توانی همگرا درنقطه ای روی مرز دایره به شعاع واحد درصفحه داشته باشد ؛ درحالت خاص در  ، یعنی درنقاط حقیقی   . این مثال یک اصل کلی در ریاضیات مدلی را نشان می دهد . یک مسئله حقیقی (ظاهراً لاینحل) را درنظر بگیرید ؛ فضا را گسترش بدهید وجواب را دراین فوق مجموعه[8] خیالی جستجو کنید درنهایت جواب بدست آمده را به قیدهای حقیقی اولیه محدود کنید

درمثال 2 ما درمورد پیچیده سازی[9] تابع f بوسیله محاط کردن یا درنظر گرفتن اعداد حقیقی درصفحه مختلط صحبت کردیم ، درادامه با عمل آسان سازی[10] ازنتیجه کلی برای حل مسئله اصلی استفاده می کنیم . بسیاری از مدل‌های فازی از طرح مشابهی پیروی می‌کنند مسئله های واقعی که شامل عدم قطعیت های آماری نمی باشند ابتدا « فازی» می شوند سپس یک نوع آنالیز وتحلیل برروی مسئله بزرگترصورت می گیرد و درنهایت نتیجه برای حل مسئله اصلی خاص و ویژه می شود. درمثال 2 بازگشت به خط حقیقی عمل آسان سازی نامیده می شود ؛ درمدل های فازی این بخش ازفرآیند به عنوان دقیق سازی[11] شناخته می شود. این عمل معمولا ضروری است ، البته هرچند که ما به یک دانش آموز آموزش می دهیم تا « از ترمز خیلی زود استفاده کند» ولی درحقیقت پدال ترمز دریک لحظه باید درست وآماده عمل کند. به عبارت دیگرما نمی توانیم یک موتور را نصحت کنیم که « تند حرکت نکن » هرچند که این دستورالعمل از کنترل کننده فازی می آید ولی ما باید ولتاژومقدار آن را به مقدار مخصوص ومعینی تغییردهیم مثال 2 نشان می دهد که این به سختی یک ایده یا داستان است ؛ درعوض باید به آن به عنوان روشی سودمند توجه کنیم

مثال 3:به عنوان آخرین وشاید واقعیترین مثال درمورد کاربرد مدل های فازی ، سیستمی که درشکل 3 نشان داده شده را درنظر بگیرید که یک آونگ وارونه ساده را نشان می دهد . این آونگ برای چرخش درصفحه شکل وحول محور متصل به ماشین آزاداست. مسئله کنترل این است که با وارد کردن یک نیروی باز گرداننده F(t) درلحظه t ، درپاسخ به تغییرات خطی وزاویه ای موقعیت یا سرعت ، پاندول را درهمه زمان ها عمود نگه داریم . این مسئله می‌تواند به روش های مختلفی فرموله شود. دریکی از ساده ترین صورت ها از تئوری کنترل استفاده می شود . خطی سازی معادلات حرکت به یک مدل از سیستم منتهی می شود که ویژگی های ثبات واستحکام توسط امتحان بخش حقیقی مقادیر ویژه  ازماتریس  ثابت های سیستم مشخص می گردد. مسیر پایین در شکل 3 این حالت را نشان می دهد . همانطور که در وسط مسیر پایین شکل 3 نشان داده شده اگر  آنگاه پاندول ثابت وساکن خواهد ماند. این رویه درمهندسی کنترل بسیار پیش پا افتاده است تا آنجا که بسیار از طراحان اصلا درمورد استفاده ازاعداد موهومی درحل مسایل حقیقی فکرنمی کنند ، ولی واضح است که این روند دقیقا مانند مثال 2 است – یک مسئله حقیقی با گذر موقت به یک مجموعه بزرگتر وخیالی ، تحلیل موقعیت درابرمجموعه ودرنهایت با خاص کردن[12] نتیجه برای بدست آوردن جواب دلخواه حل می شود

 مسیر بالا درشکل 3 راه حل دیگری را برای این مسئله کنترل نشان می دهد که برپایه مجموعه های فازی است. این روش هم ، برای موازنه وتثبیت پاندول مشهور ومطرح است وراه حلی را ارائه می کند که دربعضی موارد بسیار بهتراست ، برای مثال کنترل کننده فازی نسبت به تغییرات درطول وجرم پاندول حساسیت بسیار کمتری دارد [2]. دوباره به اصل محاط کردن توجه کنید : فازی کردن ، حل ، عمل عکس فازی کردن ، کنترل مدل های فازی با موارد مشابه به تفاوت ندارند. بعضی مواقع بهترعمل می کنند وبعضی مواقع هم نه

 این جداً تنها معیار نیست که بایستی برای قضاوت هر مدل بکار برد، و این روزها مدارک بیشتری وجود دارد که شیوه های فازی برای مسایل واقعی اغلب جایگزین خوبی برای طرحهای آشناتر و محبوب‌تری می‌باشند. این نقطه ای است که بحث ما اکنون به آن بر می‌گردد. اکنون اجازه دهید اندکی در باره تاریخ مجموعه های فازی بحث نماییم. موفقیت عظیم کاربردهای تجاری که حداقل تا حدی مبتنی بر تکنولوژی های فازی توسط شرکتهای ژاپنی می باشد کنجکاوی بسیاری را درباره سودمندی و استفاده از منطق فازی برای کاربردهای علمی و مهندسی بر انگیخته است. در طی پنج یا ده سال گذشته مدلهای فازی جانشین تکنولوژی های قراردادی تر در کاربردهای علمی و سیستم های مهندسی خصوصاً در سیستم های کنترل و شناخت الگو گردیده‌اند. اخیراً مقاله ای در Newsweek خاطر نشان کرد که ژاپنی ها هزاران الگو در لوازم فازی که تنوع بسیاری دارند منجمله ماشین لباسشویی، تهویه هوا، دوربین تلویزیونی، جاروبرقی ، کنترل ترن زیر زمینی و کشتی و اتومبیل بکار برده‌اند

اساساً این تکنولوژی است که باعث علاقه در این حوزه شده است. از 1965، مؤلفان بسیاری موارد فازی را در بخشهای مربوط به ریاضیات، علوم و مهندسی تعمیم دادند. به هر حال علاقه به مدلهای فازی تا زمانی که کاربردهای میدانی آن آشکار نشد بسیار عمومیت نداشت. دلایل این تأخیر در محبوبیت بسیار می باشد. اما شاید دقیق ترین توضیح در حقایق برحسته که در توسعه هر تکنولوژی مسئله ای اساسی می باشد نهفته باشد که به طور موجز در شکل 4 نشان داده شده است

محور افقی شکل 4 زمان است و محور عمودی انتظار است و انتظار چه کسی؟ خوب، معمولاً انتظار آدمهایی که تاوان توسعه تکنولوژی را می پردازند، اما توصیه می کنم در اینجا این محور را به مفهوم وسیع تری بگیرید، برای سودمندی، البته از چشم مصرف کننده. بخش اساسی و بسیار پر اهمیت شکل 4 خط مجانب است که به تحویل تکنولوژی به ارزش مورد انتظار بسیار پایین تری از آنچه که مصرف کنندگان اولیه در نظر داشتند منجر می شود. سالهای مربوط به محور زمان مربوط به مدلهای فازی هستند و البته با بهترین تخمین (به استثنای مورد اولی) وقتی به این شکل نگاه می کنید ممکن است مایل به حذف این مدلها و جایگزینی تکنولوژی جدید مطلوب خود برای موردی که نشان داده شده باشید. هر تکنولوژی سیر تکامل خود را دارد و همه آنها الگویی را که در شکل 4 نشان داده شده پیروی نمی کنند.(اما ممکن است شگفت زده شوید که ببینید چند تای آنها از این الگو پیروی می کنند. برای مثال، سعی کنید که با در نظر گرفتن تاریخ، افراد و حوادث مربوط به آنان را مشخص کنید برای نمونه شبکه عصبی محاسباتی، هوش مصنوعی، فرکتال ها، اعداد مختلط و غیره هر تکنولوژی جدید با خوش بینی و ساده نگری شروع می گردد . مخترع یا مخترعین در ایده های خودشان غرق می شوند، همکاران نزدیک آنها هستند که، هیجان بسیار زیادی را تجربه می کنند. اکثر تکنولوژی ها بیش از حد خوش بینانه هستند و اغلب بیش از ایجاد درآمد برای ادامه کار را نوید می دهند زیرا منبع مالی و کسب در آمد بخش جدایی ناپذیر رشد علمی است که بدون آن انقلابی ترین ایده ها و تخیل بسیار بالا از مرحله جنینی عبور نمی کنند. Hype ساخت دست طبیعی است که بیش از حد خوش بینانه است و اکثر تکنولوژی ها به سرعت ساخته می‌شوند که به نوک Hype برسند. در پی آن، همیشه تقریباً عکس العمل آن ایده ها وجود دارد که کاملاً رشد نیافته اند، و این ناچاراً به شکست می انجامد و در امتداد آن بد بینی را به دنبال دارد. بسیاری از تکنولوژی های جدید تا این نقطه تکامل می یابند و سپس ناپدید می شوند

مواردی نیز تداوم می یابند. زیرا فردی، سودمندی در آن برای (=سوء استفاده کننده واقعی) ایده های اساسی می یابد

 استفاده یا سودمندی خوب[13] به چه معناست؟ برای مثال، امروزه سودمندی های فراوانی در اعداد حقیقی برای اعداد مختلط وجود دارد، همانطور که در مثال های 2 و 3دیدیم. اما ریاضی دانان بسیاری تا زمانی که ریاضی دانانی چون وسل[14]،آرگاند[15]، همیلون[16] و گاوس[17] اعداد موهومی را از نقطه نظر هندسی به وجود آوردند، این چنین فکر نمی کردند و البته در بافت مدلهای فازی استفاده خوب مترادف با ترکیب محصولاتی است که در بالا بدان اشاره شد. علاقه به سیستم های فازی در حوزه دانشگاهی، صنعت و دولت همچنین با رشد سریع کنفرانس های ملی و بین المللی روشن می گردد. همچنانکه در بالا بدان اشاره شد کاربردهای موفقیت آمیز مدلهای فازی به لحاظ کاربردهای تجاری در ژاپن بسیار شهرت یافته اند

MITI در ژاپن LIFE[18]، را در 1988 با بودجه سالانه حدود 24000000 دلار (دلار آمریکایی) برای هفت سال شروع کرد. ]000[

«نظریه مجموعه‌های فازی»

[1]-Fuzzy

[2]-Conventional

[3]-Zade

[4]-Membership Function

[5]-truth

[6]-isomorphic

[7]-Universe Set

[8]-Superset

[9]-Complexifying

[10]-decomplexification

[11]-defuzzification

[12]-Specializing

[13]-good uses

[14] -Wessel

[15] -Argand

[16] -Hamilton

[17] -Gauss

[18] -Laboratory of Industrial Fuzzy Engineering

 

برای دریافت پروژه اینجا کلیک کنید

|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
نویسنده : علی
تاریخ : جمعه 6 فروردين 1395
دانلود پروژه مقاله تاريخچه اپتيک و کوانتوم تحت word

برای دریافت پروژه اینجا کلیک کنید

 دانلود پروژه مقاله تاريخچه اپتيک و کوانتوم تحت word دارای 55 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود پروژه مقاله تاريخچه اپتيک و کوانتوم تحت word   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه دانلود پروژه مقاله تاريخچه اپتيک و کوانتوم تحت word

پیش گفتار  
اپتیک هندسی  
اپتیک موجی  
پیشگفتار  
ماکس کارل ارنست لودویگ پلانک :  
دانشمند دانشمندان  
روزهای دانشجوئی  
مسأله انتروپی  
اجسام سیاه، فاجعه ی فرابنفش، و کوانتا:  
ثابت پلانک  
خط مرزی  
تایید صحت نظریه پلانک:  
میراث علمی پلانک  
مبانی مکانیک کوانتومی:  
نیلز هنریک دیوید بوهر :  
ساختار اتم از دید بوهر:  
سال های پایانی  
ورنر کارل هایزنبرگ:  
اوان زندگی:  
ماهیت موجی / ذره ی اجزاء اتم:  
اصل عدم قطعیت:  
گربه شرودینگر:  
جمع بندی مکانیک کوانتومی  

پیش گفتار

از ابدائی ترین تعاریف برای نور دو نظر اجتماعی می باشد: یکی نظر حکمای تعلیمی که می گفتند نور حرارتی آتش گونه است که از اجسام منیری چون خورشید و آتش انتشار می یابد و دیری حکمای طبیعی که می گفتند نور در اجسام منیر صورت ذاتی و در اجسام مستنیر صورت عَرَضی دارد که با زوال نور زایل می گردد

اما پس از گذشت دوره ها و پیشرفت ها نهایی ترین تعریف را از نور و نورشناسی چنین ارائه داده اند: Optic برگرفته از کلمه یونانی optas که به معنای دیدن و دیده شدن می باشد که تمامی کاراکتر یا شخصیت اصلی آن مبحث را، نور بازی می کند. مثل نور هندسی ( آینه ها، عدسی ها و سطوح شکننده نور و ; ) نور موجی ( پدیده های تداخل پراش، تفرق و ; ) نور شناخت پرتوهای همدوس مانند لیزر. و در لغت هم به معنای مقابل تاریکی کاربرد دارد

اولین جرقه ها برای استفاده ازر کلمه نور: در موضوع دیدن یا ابصار بوده است و اینکه چه عاملی باعث دید ن می شود. در این باره یعنی نورشناسی از دیرباز تا به حال مفصلاً صحبت شده است و ریشه اصلی آن به یونان و تمدن یونانی می رسد. این بدان معنی نیست که مصر باستان، چین و بین النهرین و هند هیچ گونه سهمی در این قلمرو نداشته اند. ولی زادگاه فلسفه و حکمت یونانی از مردم آیونا که بخش مرکزی از آسیای صغیر است، می باشد

 

اپتیک هندسی

دانشمندان در همین دوره ها در مورد دیدن و ابصار به دو گروه عمده تقسیم می شدند

1- گروهی به پیروی از اقلیدس و بطلمیوس اعتقاد داشتند که یک شی بر اثر خروج پرتوی از چشم و برخورد آن با شی دیگر انجام می پذیرد

2- گروهی دیگر از فلاسفه بر این باور بودند که دیدن یک شی با ورود یا انطباق صورت یا شبح آن با شی در چشم صورت می گیرد

در سده چهار هنگام عرضه نوآوری های بزرگ دانشمندان اسلامی فرا رسید. لویی مستشرق فرانسوی درباره تاثیر دانشمندان اسلامی بر جهان غرب می گوید: ثمرات اندیشه های پربار دانشمندان عرب و اخرتاعات گرانبهای آنها گواه روشنی است بر اینکه ایشان در همه چجیز استادی اروپا را دارند و از چهره های شاخص این دوره ها سرآمدانی مثل ابویوسف ابن اسحاق کندی ملقب به فیلسوف العرب و محمد ابن ذکریای رازی است. تا اینکه به شاهکار عالم علم نور در دنیای اسلام یعنی بطلمیوس ثانی، این هیثم صاحب کتاب المناظر می رسیم

ابن هیثم هم عصر با ابن سینا و ابوریحان بیرونی بوده است و در نیمه دوم سده چهارم قمری و در دهه سوم از سده پنجم قمری می زیسته و آثارش بیش از آن است که به شمار آید و نخستین کسی است که دستاوردهای مهمی را پس از بطلمیوس در نظریه نورشناسی پدید آورد. ابن هیثم نماینده فیزیکدانان جدید و بزرگترین فیزیکدانان مسلمان و از بزرگترین محققان نورشناسی در همه اعصار بوده است

ابن هیثم صاحب کبیری به نام المناظر است شامل بحث های مهمی در باب فیزیک نور هندسی مثل شکست و بازتابش نور، بینایی چشم و متمرکز ساختن نور به کمک عدسی های رنگین آن، آینه های کروی و سهمی وار، ابیراهی کروی، شکست پرتوهای نور بر اثر عبور از جو زمین، افزایش ظاهری اندازه اجرا آسمان در نزدیکی افق زمین، توجیهات دقیق در باب بینایی و اینکه هنگام دیدن، نور از اشیاء مرئی به چشم می رسد و ماهیت تشعشع و تابش نور و رنگ را تجزیه و تحقیق کرده و میان آنهایی که ذاتاً منیرند و آنهایی که نور ثانوی از خود می پراکنند، تمایز گذاشت. البته باید خاطر نشان کرد که روش ابن هیثم مبتنی بر آزمایش و تجربه بوده است

اگر چه کار ابن هیثم در نورشناسی محتوی عناصر یونانی به ویژه از بطلمیوس بود او همه چیز را چنان از نو سامان داد که به نتایج کاملاً تازه ای رسید که مصدق آن در باب نور و ینایی است که تماماً از آن خود اوست و مطلقاً چیزی به افکار عتیق یا نظریات اسلامی پیشین بدهکار نیست. او همان کسی است که روش درست پژوهش علم را پایه گذاری کرد و پیش از آشنایی غرب با این روش از آنها استفاده کرد تا بعدها از سوی بزرگان این روش به نام روش علمی شناخته شد

ابن هیثم پس از تحقیق و پژوهش بسیار به نتایج زیر رسید

1- باید شی مرئی یا خود منیر باشد یا آنکه نور خود را از منبع دیگری بگیرد

2- باید بین شی مرئی و چشم فاصله باشد

3- در خط واصل میان چشم و جسم نباید جسم کدری باشد یعنی محیط باید شفاف باشد

4- باید شی مرئی حجم به اندازه ای داشته باشد و کاملاً شفاف نباشد و چشم از بیماری ها و صدمات در امن باشد

مقارن با دستاوردهای علمی تمدن اسلامی اشتیاق روزافزون اروپا از جمله در قلمرو نور شناسی، در سال 1270 میلادی دانشمند لهستانی به نام ویتلو کتابی به عنوان پرسپکتیوا ( مناظر و مرایا ) منتشر کرد که به تصریح در آن نگاشته شده که منبع آن از کتاب های الهازن و بطلمیوس بوده است و بعدها دریافتند که کتاب ویتلو برگردان تحریف یافته از الهازن بوده که به هنگام نظر دادن در مورد بعضی موارد حتماً اشتباه هم داشته است. البته الهازن مدت ها در اروپای قرون وسطی و پس از آن در دوره رنسانس همچنان مرجعی اساسی در زمین نور بود

قوانین ابن هیثم برای شکست نور در قرن 17 میلادی مورد استفاده کپلر و دکارت نیز قرار گرفت

بزرگترین پل ارتباطی دنیای علم اعراب با دانشمندان غربی راجر بیکن انگلیسی که اولیت رئیس دانشگاه آکسفورد که گروس تست نیز استاد آن دانشگاه بود و رفتار پرتوهای نوری را به تفصیل مورد بحث قرار داد. بیکن همان کسی است که می گفت: در شگفتم از کسی که به مطالعه فلسفه می پردازد ولی زبان عربی نمی داند. در کتاب خود فصولی را مربوط به نورشناسی که از ابن هیثم اقتباس کرده بود دارد

دراینجا به بعضی از دستاوردهای ابن هیثم می پردازیم

شالوده آرای ابن هیثم در نظر عمومی نورشناسی از این اصل کلی منشأ می گیرد که جهان خارجی دارای وجود مستقل و عینی است. بر اساس این دیدگاه حواس، ابزارهایی برای درک و شناخت جهان خارجی اند و احساس بینایی به عامل یا موثری خارجی به نام نور مربوط می باشند. چنین نگرشی به خودی خود راه را برای نظریه حکمای تعلیمی و گروهی از فیلسوفان اسلامی پیشین و معاصر ابن هیثم بسته است. بر اساس دیدگاه وی بینایی از موثری خارجی یا عامل بیرونی به نام نور منشأ می گیرد و این اندیشه نمی تواند با اندیشه خروج چیزی از چشم و برخورد آن به شی مرئی سازگار باشد

 

اپتیک موجی

قبلاً دیدم که نور به صورت هندسی مورد بحث قرار گرفت، از قرن هفدهم به بعد آرام آرام موجی بودن نور به اثبات می رسد و تمام پدیده هایی را که قبلاً به صورت هندسی مورد بحث قرار گرفت و توجیه می شدند این بار با توجه به حالت موجی مورد بحث و بررسی قرار گرفت

در سال 1611 کپلر اولین کتاب نورشناخت شکستی را منتشر کرد. او اولین انعکاس داخلی را کشف کرده بود و با یک تقریب زاویه ای جزئی به قانون شکست که در آن زاویه های فرود و تراگسیلی با یکدیگر متناسبند دست یافته بود

ویل برار و اسنل فانون شکست را که مدت ها پوشیده مانده بود در سال 1621 به روش تجربی کشف کرد. اسنل با آگاهی بر انکه چگونه پرتوهای نوری هنگام عبور از مرز بین دو ملأ تغییر جهت می دهد به ناگهان دری به روی نور شناخت کاربردی نوین گشود. دکارت هم اولین کسی بود که قانون شکست را بر حسب سینوس ها که امروزه با آن آشنا هستیم بیان کرد. کتاب دکارت در این زمینه دیوپتریک نام دارد. او می گفت نور چیزی نیست مگر حرکتی مشخص یا کنشی متصور در ماده ای بسیار خالص که تمامی خلل اجسام را پر می کند ( نور همچون فشاری است که از راه ملأ کشسان عبور می کند )

پیردوفرما در اعتراض به فرضیه دکارت قانون شکست را مجدداً از اصل کمترین زمان خود استنتاج کرد. فرما با اختیار حکم کوتاه ترین مسیر هرو به عنوان نقطه عظیمت خود ادعا کرد. نور هنگام انتشار از نقطه ای به نقطه دیگر مسیر خود را چنان انتخاب می کند که آن را در کمترین زمان بپیماید حتی اگر لازم باشد از کوتاه ترین مسیر خود منحرف شود

پدیده پراش یعنی انحراف از انتشار راستخط را که هنگام عبور از یک مانع رخ می دهد و اولین بار گریمالدی مورد توجه قرار داد. او نوارهای نور را در سایه میله ای که چشمه کوچکی آن را روشن کرده بود مشاهده کرد. رابرت هوک اولین کسی بود که نقش های رنگی ناشی از پوسته های نازک را بررسی کرد و اولین مفهوم را که نور حرکت ارتعاشی سریع ملأیی است که با سرعت زیاد منتشر می شود پیشنهاد کرد و افزون بر این هرتپ یا ارتعاش جسم درخشان کره ای را پدید می آورد که همین سرآغاز نظریه موجی بود

نیوتن در سال مرگ گالیله به دنیا آمد. او در مورد ماهیت واقعی نور دو دل بود و به حرکت ذراتی که امروزه فوتون نامیده می شود توجه داشت. او روزنه ای بود که در کرکره اتاق ایجاد کرد و نور عبوری از روزنه را به یک منشور تاباند و در دیوار رنگ ها را مشاهده کرد. او در آزمایش آزمایش اول خود به این نتیجه رسید که نور محتوی پرتوهایی است که قابلیت شکست متفاوتی دارند

در ایام باستان فکر می کردند که نور از چشم به صورت پرتوهایی به جسم می خورد اما نیوتن آن را به صورت پرتابه هایی تصور کرد که از جسم ساطع می شود. در آزمایش بعدی او نور را از یک منشور گذراند بعد پرتوهای رنگی را بر روی منشور دوم با استفاده از عدسی متمرکز کرد به طوری که منشور دوم اثر منشور اول را خنثی می کرد و باریکه نور را به طرف منشور سوم فرستاد و دوباره طیف های رنگی تشکیل داد و نشان داد که از طیف تجزیه شده دوباره می توان نور سفید بدست آورد

نیوتن متوجه شد که مقدار شکست نور با چیزی که امروزه پاشندگی می نامیم یعنی مقدار اختلاف شکست میان پرتوهای قرمز و آبی متناسب است و به این نتیجه رسید که محال است یک عدسی ساخته شود که عیب رنگی نداشته باشد که البته اشتباه بود و دولاند آن را تصحیح کرد. وی دو شیشه را که دارای ضریب شکست متفاوتند طوری کنار هم قرار داد که اثر همدیگر را در تجزیه خنثی می کردند و به یک عدسی بودن عیب رنگی دست یافت

تقریباً همزمان با نیوتن، هویگنس هلندی هم در حال گسترش هر چه بیشتر نظریه موجی بود. هوینگس بر خلاف دگارت، هوک و نیوتن اعتقاد داشت. هر چه محیط چگالتر باشد سرعت نور کمتر است او قوانین بازتابش و شکست را به دست آورد و حتی با استفاده از نظریه موجی خود نور شکست دوگانه در کلسیت را توضیح داد و در حال کار کردن با کلسیت بود که قطبش را بدست آورد. اما رای مسلط نیوتن در خلال قرن هجدهم همچون پوششی بر روی نظریه موجی افتاد و هواداران آن را خاموش کرد

در قرن نوزدهم دکتر توامس یانگ نظریه موجی را دوباره زنده کرد. او توانست فریزهای رنگی پوسته های نازک را توضیح دهد و طول موج رنگ های مختلف را با سود جستن از داده های نیوتن تعیین کند

البته شاید سوالی اینجا می تواند مطرح شود: با اینکه نیوتن به نظریه ای اعتقاد داشت چطور یانگ توانست از نظریه های او کمک بگیرد؛ باید بگوییم که اگر چه نیوتن به نظریه ذره ای اعتقاد داشت اما عملاً حرف هایی می زد که بی ارتباط با نظریه موجی نبود. حتی گاهی اوقات یاریگر نظریه موجی هم بود. مثلاً نیوتن می گفت: ذرات نور وابسته به رنگ های مختلف اتر را به ارتعاش های مختلف برانگیخته می کند. علاوه بر آن رنگ سرخ با بالاترین ارتعاش اتر و رنگ بنفش با کوتاه ترین ارتعاش متناظر است

با کمی دقت درمی یابیم که اگر به جای ذرات، موج را جاگذاری کنیم کاملاً توجیه گر پدیده رنگ هاست. شایان ذکر است که یانگ اصل تداخل را به نظریه موجی اضافه کرد

اگوستین ژان فرنل بی خبر از کوشش های سیزده سال پیش یانگ، مفاهیم موجی هوینگس و اصل تداخل را با هم ترکیب کرد. در آن روزها فرض می شد این موج ها مانند امواج صوتی طولی اند. آراگو یکی از طرفداران نظریه موجی فرنل بود. بر اثر انتقاد مردان نامدار و هواداران نظریه گسیلش همچون پیرسیمون دولاپلاس و ژان بایتیست بیو، نظریه فرنل تاکید ریاضی پذیرفت. او توانست نقش های راش ناشی از مانع ها و روزنه های گوناگون را محاسبه کند و به طور رضایت بخشی انتشار راستخط در محیط های همگن را توضیح دهد

 سرانجام فرنل به تقدم یانگ در زمینه تداخل پی برد و نامه ای به او نوشت و احساس آرامش خود را از هم رای بودن با وی ابراز داشت سپس این دو مرد بزرگ با هم یار شدند

درباره موضوع کلسیت مطرح شد. نیوتن این مورد را نتوانست به طور کامل حل کند. و فقط اینطور توجیه کرد که پرتو نوری دو جانب متقابل دارد. او این مفهوم بی تقارنی را گسترش بخشید. گرچه از هر تفسیری بر حسب ماهیت فرضی نور دوری گزید

در سال 1808 بود که مالوس کشف کرد این دو جانبی بودن نور در بازتابش نیز پدیدار می شود. این پدیده ذات محیط های بلوری نبود. پس از این یانگ آراگو و فرنل آزمایش هایی در جهت تعیین قطبش بر تداخل انجام دادند ولی نتایج حاصل در چارچوب تصویر موج طولی آنها به کلی توجیه ناپذر بود. این سه دانشمند سال ها به این مسئله درگیر بودند تا اینکه سرانجام یانگ اظهار داشت اتری ممکن است همانند ارتعاش یک ریسمان عرضی باشد

 بنابراین دو جانبی بودن ارتعاش نور فقط نمایشی از دو ارتعاش متعامد اتر عمود بر راستای حرکت پرتو است

فاراده در سال 1845 رابطه میان الکترومغناطیس را بنیان گذارد. او این رابطه را هنگامی پیدا کرد که دریافت قطبش یک باریکه را می توان با اعمال یک میدان مغناطیسی قوی بر محیط تغییر دهد. جیمز کلارک ماکسول تمام دانش تجربی آن روز را در مورد این موضوع به صورت مجموعه واحدی از معادلات ریاضی به طور بارزی خلاصه کرد

او در حالی که برای پیدا کردن سرعت نور تلاش می کرد به رابطه ای بر حسب خواص الکتریکی و مغناطیسی دست یافت. به این ترتیب این نتیجه اجتناب ناپذیر بود که نور یک آشفتگی الکترومغناطیسی به شکل امواج است که از طریق اتر منتشر می شود

آلبرت انیشتین نظریه نسبیت خاص خود را در سال 1905 به طور کاملاً مسقل ارائه کرد. او نیز در این اثر خود، فرضیه وجود اتر را رد کرده است. که بنا به گفته خود انیشتین، ارائه یک اتر نو رسان زیاد است زیرا نظریه که در اینجا باید گسترش یابد نیازی به فضای ساکن مطلق ندارد؛ او علاوه بر اینها باز هم فرض کرد که نور همیشه با سرعت متناهی که مستقل از حالت حرکت جسم گسیلنده است در فضای خالی منتشر می شود

 

برای دریافت پروژه اینجا کلیک کنید

|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
نویسنده : علی
تاریخ : جمعه 6 فروردين 1395
دانلود پروژه پايان نامه بررسي شبکه هاي ATM تحت word

برای دریافت پروژه اینجا کلیک کنید

 دانلود پروژه پايان نامه بررسي شبکه هاي ATM تحت word دارای 112 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود پروژه پايان نامه بررسي شبکه هاي ATM تحت word   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه دانلود پروژه پايان نامه بررسي شبکه هاي ATM تحت word

چکیده    
مقدمه    
مقدمه ای در ارتباط با به وجود آمدن پروتکل ATM    
مفهوم ATM    
مفهوم ATM و شبکه های مبتنی بر ATM    
ATM چیست و در چه رده ای قرار دارد؟    
مد انتقال آسنکرون یا ATM    
شبکه ATM    
شبکه های ATM    
شبکه های بسیار سریع    
شبکه های مبتنی بر ATM    
اجزاء ساختار شبکه ATM و مشخصات آن    
مشخصات ATM به شرح زیر اند:    
مشخصه های فنی ATM    
دور نمای ATM    
همایش ATM    
فرمت سلول ATM    
عنوان سلول (Cell Header UNI) UNI    
عنوان سلول (Cell Header NNI) NNI    
سلول ATM و سرآیند آن    
مقایسه پکت ATM با پکت IP4 و IP6    
انواع روش های انتقال اطلاعات    
پروتکل ATM    
لایه ی ATM (ATM Layer)    
لایه های مدل ATM    
لایه ی فیزیکی    
وظایف لایه ی فیزیکی    
وظایف زیر لایه ی PMD    
زیر لایه (Transmission Convergence Sublayer)TC    
لایه ی تطبیق    
لایه ی (ATM Adaption Layer)AAl    
انواع لایه های سازگاری ATM (Adaption)    
(Adaption Layer Type 1) AAL1    
(Adaptation Layer Type) AAL2    
(Adaption Layer Type 3/4) AAL3/4    
(Adaptation Layer Type5) AAL5    
نحوه ی عملکرد سوئیچ ATM    
مشخصات سوئیچ ATM (ATM Switch characteristics )    
معماری سوئیچ ATM    
بلوکه شدن سوئیچ ATM    
سوئیچینگ و مسیر یابی سلول های ATM (VPI’s & VCI’s)    
مزایای استفاده از تکنولوژی ATM    
انواع ارتباطات ATM    
تنظیم ارتباطات ATM از طریق signaling  ATM    
شبکه های اتصال گرا: ATM, Frame, Relay, X.25    
بر قراری اتصال در ATM    
اتصالات منطقی ATM    
استفاده های اتصال کانال مجازی    
خصوصیات مسیر مجازی – کانال مجازی    
سیگنالینگ کنترل    
مقایسه ی شبکه ی ATM با اترنت گیگا بیت    
ارتباط شبکه های اینترنت و ATM    
ATM ها چگونه کار می کنند؟    
ATM و بانکداری الکترونیکی    
ATM و امور بانکی    
قسمت های دستگاه خودپرداز    
تشخیص اسکناس ها    
واریز وجه    
امنیت و ATM    
دستور العمل انتخاب PIN    
دستگاه های خودپرداز هدف حمله ی ویروس ها قرار گرفته اند    
بررسی پروتکل TCP/IP    
معرفی پروتکل TCP/IP    
لایه های پروتکل TCP/IP    
لایه ی Application    
لایه ی Transport    
لایه ی اینترنت    
لایه ی Network Interface    
مشخص نمودن برنامه ها    
آدرس IP    
پورت TCP/PDU    
سوکت (Socket)    
نتیجه گیری    
منابع    

بخشی از منابع و مراجع پروژه دانلود پروژه پايان نامه بررسي شبکه هاي ATM تحت word

شبکه های ATM : مهندس محمد اسد پور

فن آوری شبکه : دکتر عطا الهی

شبکه های کامپیوتر و انتقال داده ها : محمد مهدی سالخورده

چکیده

در حالی که اینترنت از وقایع اخیر دنیای ارتباطات بوده و با گسترش روز افزون خود جهان را در می نوردد، فراهم کنندگان خدمات هم چنان اذعان دارند که در حال حاضر تکمیل ترین  شبکه ای که می تواند برای مدیریت پهنای باند قابل انعطاف و پشتیبانی دسته های خدماتی مختلف، با نیازمندی های کیفیت سرویس متفاوت به کار رود تکنولوژی شبکه ی ATM است. از سوی دیگر به خاطر محبوبیت و فراگیر شدن اینترنت، موفقیت ATM نیز به عنوان یک تکنولوژی شبکه داده به مقدار زیادی به پشتیبانی پروتکل IP و توانایی عبور ترافیک IP بستگی دارد. این الزام دو سویه باعث گردیده است که ارتباطات دوربرد تغییری آزمایشی را تجربه نماید. تغییری که باعث می شود ATM به راحتی در هسته ی شبکه قرار گیرد و از پروتکل IP در دستیابی به شبکه استفاده گردد. این دیدگاه الزام فراهم آوردن تکنیک ها و روش هایی برای شبکه بندی شبکه های ATM و اینترنت و اجرای پراتکل IP روی شبکه های ATM را ایجاد می نماید. در ابتدا این شبکه شبیه سازی گردید و پس از آن به بررسی کیفیت انتقال ترافیک داده در این شبکه و نیز تأثیر پارامتر های مختلف شبکه از جمله تعداد میزبان های IP  متصل به شبکه، طول بافر سوئیچ ATM متصل به منابع IP و طول متوسط بسته IP تولیدی در    ایستگاه ها، بر روی پارامتر های انتقال ترافیک داده از جمله پارامتر های تضمین کیفیت خدمات که از ویژگی های مهم شبکه ATM می باشد پرداخته ایم. پس از آن سیاست های مختلف    دور اندازی سلول در سوئیچ ATM تحت سرویس UBR در شبکه شبیه سازی شده تست شده و نتیجه با سرویس ABR مقایسه گردیده است. در این زمینه یک روش پیشنهادی نیز برای رسیدن به کارایی بالاتر در شبکه پیاده سازی شده است

لازم به ذکر است نرم افزار ویژوالی نیز برای شبیه سازی شبکه اینترنت تهیه گردیده است

مقدمه

ATM مخفف Asynchronous Transfer Mode؛ حالت انتقال نا همزمان، نوعی تکنولوژی است که قابلیت انتقال بلادرنگ دارد، صدا، تصویر و ترافیک رله قابی را درشبکه های کامپیوتری فراهم می کند. واحد اصلی انتقال در این روش بسته ای 53 بایتی با طول ثابت است که از 5 بایت جهت اعمال کنترلی و از 48 بایت باقی مانده برای انتقال داده استفاده می شود.   لایه ای که با عنوان میانجی بین لایه های سطح بالا و پایین عمل کرده و انواع مختلف داده (از جمله صدا، تصویر و قاب داده ها) را به داده های 48 بایتی مورد نیاز ATM تبدیل می کند. ATM Adaption Layer یا AAL نامیده می شود

این پروتکل یک تکنولوژی جدیدی است که تحولی از پژوهش های آزمایش گاهی گرفته تا مسائل بازرگانی و تجاری، ایجاد کرده است و سازگاری با فیبر نوری و هم چنین با CAT5 دارد و قابلیت ارتقاء دادن به سرعت های بالا تر نیز می باشد و در آینده بیشتر در دسترس مهندسان خواهد بود و قیمت آن نیز بیشتر از پیش نزول خواهد کرد

مقدمه ای در ارتباط با به وجود آمدن پروتکل ATM

با ورود به قرن 21 اینترنت به عنوان زیر ساخت اصلی جهان ارتباطات در آمده است. در حال حاضر پرتکل TCP/IP بستر اصلی جا به جایی داده ها در اینترنت بوده و کلیه ی سخت افزار ها و نرم افزار های شبکه ی جهانی اینترنت بر اساس این پروتکل طراحی و ساخته شده اند ولی با توجه به نقاط ضعف فراوان پروتکل فوق پروتکل های جدید تری مانند ATM برای جایگزینی با آن طراحی شده اند لیکن مشکل عمده این جاست که در صورت تصمیم در جهت جایگزینی TCP/IP با دیگر پروتکل ها و یا حتی اگر بخواهیم نسخه ی جدید تری را به جای آن به کار بگیریم مستلزم آن است که کلیه ی نرم افزار ها و سخت افزار های موجود در سراسر جهان با    مد های جدید تر تعویض شوند و این یعنی میلیارد ها هزینه

(در تکنولوژی ATM می توان کیفیت سرویس را تضمین نمود)

مفهوم ATM

در ATM واژه ی نا همزمان، به روش انتقال فیزیکی اشاره ای ندارد که در B-ISDN در واقع هم زمان است (برای مثال در SDH/SoNET ). کلمه ی هم زمان به روشی اشاره می کند که در آن، عرض باند میان اتصالات و کاربران پخش می شود. عرض باند در شیار های زمانی با طول ثابت تقسیم می شود. این شیار های زمانی در صورت نیاز کاربر، در اختیار او قرار می گیرد و به همین دلیل، موقعیت زمانی از پیش تعیین شده ای را ندارد. مد انتقال نشان دهنده ی نوعی روش چند تافت سازی و سوئیچینگ است

مفهوم ATM با چند اصل تعریف می شود

تمامی اطلاعات به شکل واحد های اطلاعاتی با طول ثابت موسوم به سلول حمل    می شوند و سلول، از یک سرآیند و یک حوزه اطلاعات که گاهی محموله یا بار ترافیکی نامیده می شود، تشکیل شده است
ATM اتصال گر است و سلول های موجود در یک اتصال مجازی یکسان، ترتیب خود را حفظ می کنند
منابع ترافیکی می توانند سلول ها را موقعی که مورد نیاز است، تولید کنند یعنی بدون موقعیت زمانی از پیش تعیین شده و لذا سلول ها برچسب های صریح برای شناسایی اتصال دارند
کارکرد اصلی سرآیند سلول، شناسایی سلول های متعلق به اتصال مجازی یکسان است
برچسب های شناسایی فقط معنای محلی دارند (لذا آدرس های صریحی نیستند) و در هر سوئیچ ترجمه می شوند
حوزه اطلاعات به طور شفاف حمل می شود به عنوان مثال هیچ گونه عمل کنترلی خطا یابی بر روی این حوزه صورت نمی گیرد
جریان های سلولی، به طور نا همزمان تحت عمل چند تافت سازی با تقسیم زمانی قرار می گیرند

مشاهده می شود که ATM روشی است برای یک پارچه سازی تمامی ترافیک در سطوح انتقال، دسترسی کاربر و سوئیچینگ مهم ترین مزیت ATM برای UNI آن است که تخصیص پویای باند را در تمامی موارد امکان پذیر می کند. یعنی عرض باند را در موقع نیاز به منابع ترافیک واگذار می کند. وقتی واگذاری عرض باند ATM را با روش انتقال همزمان (STM) مقایسه می کنیم که در آن شیار های زمانی برای اتصالات ذخیره می شود. می بینیم که در STM واسط به نرخ های غیر قابل انعطاف و ثابتی محدود می شود. ATM به واسط های با نرخ بیت متغیر اجازه می دهد بدون آن که برای واسط های با نرخ بیت ثابت مانعی باشد. ATM به عنوان نوعی روش چند تافت سازی به طور بالقوه می تواند از تسهیلات انتقالی، به طور       کارآمد تری نسبت به TDM همزمان استفاده کند. در TDM همزمان، یک قاب متناوب مرکب از شیار های زمانی کوتاه (معمولاً به اندازه ی یک بایت) روی یک پیوند انتقال تعریف می شود و اتصالاتی که در آن پیوند سهیم هستند موقعیت های ثابت شیار زمانی در هر قاب، برایشان ذخیره شده است. در TDM ناهمزمان می توان از این عدم کارایی جلوگیری کرد زیرا در آن شیار های زمانی، در هنگام نیاز به اتصالات واگذار می شوند اما یک برچسب پیشوندی هم برای هر شیار زمانی مورد نیاز است تا اتصال را مشخص و شناسایی نماید. در نتیجه، شیار های زمانی بزرگ تر از بایت ها هستند تا برچسب ها بتوانند کسر کوچکی از کل عرض باند را مصرف کنند. هم چنین برای هر شیار زمانی، یک عمل پردازش نیز مورد نیاز است و ذخیره سازی در یک حافظه موقتی لازم است تا تنازع را بر طرف کند. ATM نمونه ای از این روش TDM نا همزمان و برچسب دار است که در آن بر چسب های شناسایی واقع در سرآیند سلول، فقط اهمیت محلی دارند نه اهمیت سراسری از انتها تا انتها

ATM به عنوان نوعی روش چند تافت سازی، از امکان بالقوه استفاده مؤثر انگیزه گرفته است به عنوان یک روش سوئیچینگ در مقایسه با STM (یا سوئیچینگ مداری با نرخ چندگانه) مزیت اصلی آن این است که ضرورتی برای اختصاص حداکثر نرخ ندارد. در حالی که STM دارای ضرورت است. اختلاف دیگر آن این است که در ATM، سلول ها به صورت شبکه ای پردازش  می شوند در حالی که STM ترافیک را به طور شفاف از شبکه عبور می دهد. از نظر بار پردازشی، این نوعی عیب به شمار اما این امکان را می دهد که شبکه کنترلی بیشتری روی مسیر یابی، کنترلی خطا، کنترلی جریان نسخه سازی و اولویت ها داشته باشد. مثلاً با در نظر گرفتن      اولویت ها، شبکه می تواند روی رفتار ترجیحی برای یک کلاس ترافیکی نسبت به کلاس دیگر در سطوح اتصالات مجازی یا سلول های انفرادی، کنترل داشته باشد. از این رو ATM به عنوان روش سوئیچینگ که توانایی کنترل جزئی و قابل انعطاف ترافیک شبکه را دارد، می تواند انگیزه بالا تری ایجاد نماید. اساساً دو نتیجه نامطلوب از ماهیت نا همزمان ATM ناشی می شود. از    آن جا که منابع شبکه رزرو نمی شود لذا وقتی ترافیک بسیار زیادی به سوی منابع حافظه موقتی محدود حجوم می آورد، امکان تراکم ترافیک ایجاد می شود که ضرورتاً سبب از دست رفتن   سلول ها می شود. نتیجه ی دیگر، تأخیر های متغیر سلولی در گذر از شبکه است که بیشتر ناشی از تأخیر های تصادفی صف بندی در هر سوئیچ است. از این رو، مفهوم کیفیت سرویس (QOS) بر حسب تأخیر های سلول و نرخ تلفات سلولی، در بحث های ATM اساسی است. قرار است B_ISDN کلاس های کیفیت سرویس چندگانه اتصالات مجازی را برای گستره ای از انواع ترافیک با الزامات QOS متفاوت، پشتیبانی نماید. پشتیبانی از چند کلاس ترافیکی و حفاظت از QOS آن ها در حالی که به طور هم زمان اشتراک آماری و استفاده از منابع شبکه را به حد اکثر برساند، مشکل ترین چالشی است که در پیاده کردن ATM وجود دارد

مفهوم ATM و شبکه های مبتنی بر ATM

معماری ATM به منظور انتقال بسیار سریع داده، صدا و تصویر بر روی خطوط انتقال عمومی (سیم مسی و فیبر نوری) طراحی و پیاده سازی شد. بر خلاف بسیاری از شبکه هایی که با آن آشنا هستیم ATM شبکه ای مبتنی بر سوئیچ است. بدین ترتیب در  ATM برای انتقال اطلاعات باید ابتدا یک ارتباط هماهنگ بین مبدأ و مقصد و سوئیچ های میانی برقرار شود به این ارتباط مدار مجازی گفته می شود. ATM می تواند اطلاعات را به روش “بدون اتصال” یا Connection less ارسال کند ولی از این قابلیت به ندرت استفاده می شود و نیز قادر به انتقال مؤثر داده ها بر روی خطوط عمومی (فیبر) تا نرخ Gbps1 است. تکنولوژی به کار رفته در    شبکه های امروزی از جمله عمومی ترین آن یعنی IP از نوع بدون اتصال است. در پروتکل های بدون اتصال، مشکل اساسی و اجتناب نا پذیر آن است که هیچ تضمینی در رسیدن داده ها به مقصد مورد نظر وجود ندارد ولیکن ATM پروتکلی اتصال گراست و قبل از هر گونه مبادله داده یک “مدار مجازی” یا به اصطلاح یک “نشست” از طریق سوئیچ ها برقرار می کند پس از آن که داده ها مبادله شد،‌ مدار مجازی که حاصل هماهنگی قبلی سوئیچ ها است از بین خواهد رفت. ATM تنها معماری مبتنی بر انتقال اتصال گرای داده ها نیست. در حقیقت همتا و مکمل IP یعنی TCP نیز پروتکلی اتصال گرا ست. بدون شک ATM بهترین مثال مطمئن و اتصال گرای داده هاست. عامل مؤثر و کلیدی درسرعت بسیار بالای ATM قالب داده ها و ساختار فریم ها در این معماری است. تمام پروتکل های مسیر یابی بسته هایی را مسیر یابی و هدایت می کنند که اندازه ثابت و مشخصی ندارند یک بسته IP می ماند از 20 بایت تا 64 کیلو بایت متغیر باشد. در این پروتکل ها گیرنده ی بسته ابتدا سرآیند آن را پویش می کند تا حجم و اندازه دقیق بسته را استخراج نماید. زمان پردازش یک بسته بنا به اندازه ی آن متغیر است. در مقابل ATM داده ها را در قالب بسته هایی کوچک و با اندازه ی ثابت که سلول نامیده می شود انتقال می دهد.    سلول های  ATM فارغ از آن که چه قدر داده در خود حمل می کنند هر کدام 53 بایت هستند. در هر سلول 53 بایتی 5 بایت سرآیند (Header) و 48 بایت بخش حمل داده (PayLoad) است. اگر چه سلول های ATM دارای اندازه ی ثابت هستند ولی با این وجود قطعاً به داشتن سرآیند نیازمندند. سرآیند هر سلول ATM مبدأ و مقصد سلول را مشخص می کند


برای دریافت پروژه اینجا کلیک کنید

|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
نویسنده : علی
تاریخ : جمعه 6 فروردين 1395
دانلود پروژه مقاله آناليز عدم قطعيت و حساسيت همراه با کاليبراسيون اتوماتيک براي مدل توزيعي حوضه تحت word

برای دریافت پروژه اینجا کلیک کنید

 دانلود پروژه مقاله آناليز عدم قطعيت و حساسيت همراه با کاليبراسيون اتوماتيک براي مدل توزيعي حوضه تحت word دارای 77 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود پروژه مقاله آناليز عدم قطعيت و حساسيت همراه با کاليبراسيون اتوماتيک براي مدل توزيعي حوضه تحت word   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه دانلود پروژه مقاله آناليز عدم قطعيت و حساسيت همراه با کاليبراسيون اتوماتيک براي مدل توزيعي حوضه تحت word

مقدمه  
مدل شبیه‌سازی حوضه آبریز :  
3- نمایش حوضه و داده‌ها  
4- شناسایی پارامتر  
1-4- نمایش دادن  
2-4- پارامترسازی  
3-4- آنالیز پارامتر (SA )  
1-3-4- دامنه و تقسیمات ورودی، داده‌ها و نمونه‌گیری  
2-3-4- تعیین بخش حساسیت  
3-3-4- نتایج کاربردی و بحث  
5- برآورد پارامتر  
6-اثبات و صحت مدل  
شیوه GLUE  
فرمول‌بندی پایه  
فرضیه‌هایی بر پارامترها قبل از توزیع احتمال  
توابع درست‌نمایی less formal  
واریانس نمونه:  
واریانس نمونه باقی‌مانده:  
پارامترهای رفتاری  
مشتق توزیع احتمالی پشتی پارامتر از طریق مدل مونت کارلو  
مشتق‌گیری توزیع احتمال پیش‌بینانه  
آموزش گسسته و ناهماهنگ GLUE  
ویژگی‌های مورد نیاز روش استنباطی Bayesian  
انجام و هماهنگی در آموزش  
تعادل و برابری بین پردازش دسته و آموزش متوالی  
آزمایش شبیه سازی شده  
مدل هیدرولیکی a.bc  
آزمایش نمونه  
نتایج آزمایش  
مقایسه ساده  
شبیه سازیها و مقدار و ارزش آزمایشات  
کاهش یا اتلاف کل اشتباه میانگین مربع  
نتیجه گیری و توصیه ها  
1-7- نتایج و بحث کاربرد  
8- خلاصه و نتایج  

مقدمه

مدلهای هیدرولوژیک ابزارهای معینی هستند ما را قادر می‌سازند تا خیلی از موضوعات عملی و مهم را در طی برنامه‌ریزی، طراحی عملیات و مدیریت سیستمهای ذخایر آب بررسی نماییم. با این وجود ، مدلها، ساده شدن واقعیت هستند و اینکه چقدر پیچیده هستند مهم نیست، مدلها تحت تاثیر بعضی از حالات مفهوم ‌سازی یا تجربه‌گرایی هستند و نتایج آنها صرفاً همانند فرضیات و الگوریتمهای مدل، جزییات و کمیت ورودی‌ها و براوردهای پارامتر، واقع‌گرایانه می‌باشند. در اکثر مدلها، این مسلئه ضرروی است را مکانیزم را صحت برآوردهای مدل را براساس اطلاعات مشاهده شده موجود تایید می‌کند. قبل از استفاده از مدلها برای اهداف مورد نظر خود، اجرا شوند. شیوه معمول برای انجام این وظیفه مفید، تشخیص مقادیر پارامترهای مدل است بطوریکه شبیه‌سازی‌های مدل بطور فشرده رفتار مشاهده شده منطقه مورد نظر را هماهنگ می‌کند، شیوه عموماً بعنوان کالیبراسین نشان داده می‌شود. مشخصه و برآورد پارامتر دو مرحله خیلی مهم کالیبراسیون هستند. انتخاب پارامتر به مرحله‌ای اشاره دارد که در آن پارامترها نیاز دارند تا تنظیم گردید و انتخاب شوند در صورتیکه برآورد پارامتر شیوه بعدی تعیین مقادیر مناسب یا نزدیک بهینه پارامترهای ویژه‌ای باشد. روشها و مشکلات انجام این دو مرحله درجه‌بندی میان دیگر عوامل به نمونه و پیچیدگی مدل شبیه‌سازی آبخیز  درجه‌بندی شده بستگی دارد. اکثر مطالعات قبلی کالیبرگیری با مدلهای تجربی Lumped و مدلهای مفهومی Lumped سروکار دارد. اما متغیرهای آبخیز ورودی‌هارا برواکنشهای هیدرولوژیک تاثیر می‌گذارند. ممکن است از نظر فضایی و زمانی اختلاف داشته باشد. بنابراین محاسبه ناهمگونی متغیرهای محیطی نظیر نوع خاک، مصارف زمین، خصوصیات نقشه‌برداری زمینی و پارامترهای آب و هوا برای شبیه‌سازی درست تاثیر خصوصیات مخنلف از نظر فضایی ضروری می‌باشد. مدلهای شبیه‌سازی طولانی مدت مداوم مانند ساختمان US کشاورزی (USDA ابزار ارزیابی آب و خاک را قادر به توضیح این متغیر جامانده تعداد پارامترها و متغیرها در مدل توزیع شده بیشتر از مدل Lumped برای آبخیز مشابه است که  درجه‌بندی چنین مدلهایی بویژه مرحله تشخیص پارامتر خیلی پیچیده را ایجاد می‌نماید . هنوز با کارهای محدودی با توجه به کالیبرگیری مدلهای توزیعی انجام شده است. آرنولد، رفزگارد و نادلن و ; افرادی هستند که تمرکز و توجه آنها به این منطقه از بررسی مبذول شده بود

شاید مهمترین کار ضروری برای انجام مشخصات پارامتر کاهش تعداد پارامترهایی باشد که باید در مرحله برآورد پارامتر تحقق یابند. این مقاله ، استفاده از سه شیوه سلسه مراتبی را توضیح داد یعنی، نمایش پارامتر، معیاربندی فضایی و بررسی حساسیت کلی پارامتر تا پارامترهای قابل از اندازه‌گیری SWAT را بررسی نماید

بررسی‌ حساسیت پارامتر با استفاده از بررسی برگشت انجام شد که در محدوده‌های اطلاعات جفت ورودی و خروجی جمع‌شده براساس تکنیک مونت کارلو با نمونه لاتین هایپرکوب صورت گرفت

برآورد پارامتر از این تعمیم پیروی می‌کند را کدام پارامتر‌های مدل شبیه‌سازی باید درجه‌بندی می‌شوند. دو نمونه شیوه کالیبرگیری اتوماتیک، کالیبرگیری دستی و اتوماتیک است. درجه‌بندی دستی برای مدلهای پیچیده بطور گسترده‌ای استفاده می‌شود که شامل نمونه‌ مدلهای توزیعی می‌باشد. اما این کالیبرگیری دستی وقت‌گیر و خیلی ذهنی است و موفقیت آن به تجربه فرد ارائه دهنده مدل و اطلاعات وی درباره آبخیز در طی فرضیات مدل و الگورنیم آن بستگی دارد. کالیبرگیری اتوماتیک سریع است، کمتر ذهنی می‌باشد و هنگامیکه جستجوی وسیع احتمالات موجود پارامتر راآغاز می‌کند نتایج بدست آمده از آن بهتر نتایج بدست‌آمده از کالیبرگیری دستی است. آرنولد و اکهاردوسزاث کالیبرگیری اتوماتیک را برای مدلهای توزیعی بکار بردند هر دو شیوه آمداز آلگوریتم جستجوی ارزیابی پیچیده متغیر استفاده نمودند. در این بررسی، مدول کالیبرگیری اتوماتیک با استفاده از آلگوریتمهای ژنتیک توسعه یافت. مدول حاصل برای درجه‌بندی جریان رود و برآوردهای تجمع رسوب SWAT بکار گرفته شد که از داده‌های مربی آمده از آبخیز illinoisجنوبی استفاده نمود. متاسفانه، درجه‌ ‌بندی مدل، اعتبار پیش‌بینی‌های مدل را ضمانت نمی‌‌کند. مقادیر پارامتر بدست آمده طی کالیبرگیری و پیش‌بینی‌های بعدی ایجاد شده از مدل درجه‌بندی شده تنها همانند اعتبار فرضیات مدل برای آبخیر مورد بررسی و کمیت و کیفیت داده‌ های واقعی آبخیز مورد استفاده برای شبیه‌سازی و درجه‌بندی،‌واقعی می‌باشند. بنابراین حتی بعد از کالیبرگیری، بطور بالقوه تعداد زیادی احتمال در نتایج وجود دارد زیرا این خیلی بعید است که داده‌های فرعی فاقد اشتباه یافت شود و بخاطر اینکه هیچ مدل شبیه‌سازی کاملاً انعکاس واقعی و درست از روش فیزیکی نمونه نمی‌باشد. این بررسی از ارزیابی عدم قطعیت درست نمایی کلی استفاده نمود تا احتمالات درگیر با جریان رود فرض شده و تجمع رسوب برای آبخیز را بررسی نماید

 

مدل شبیه‌سازی حوضه آبریز

SWAT یک شبیه‌ساز زمانی مداوم و توزیع شده از نظر فضایی می‌باشد که برای کمک به مدیران ذخیره آب در تاثیرات فرض شده روشهای مدیریتی زمینی روی آب، رسوب و بار شیمیایی کشاورزی توسعه یافته است

SWAT استفاده از اطلاعات آبخیز نظیر آب و هوا، خاک،‌ وضعیت زمین، سبزیجات و روشهای مدیریت زمین را ایجاد می‌کند تا روشهای آبخیز نظیر جریان سطحی یا زیر سطحی، فرسایش و رسوب، روشهای رسوب کانال و زمینی رشد محصول برای روشهای مدیریتی مصرفی کشاورزی و کیفیت آب بعلاوه انواع گوناگون نیتروژن و فسفر را شبیه‌سازی می‌نماید. مدل براساس مقیاس زمانی روزانه با Subderly کار می‌کنند. از نظر فضایی، مدل آبخیز را در آبگیر‌های فرعی، تقسیم می‌کنند. و بالقوه آبگیری‌های فرعی را در واحدهای واکنش هیدرولوژیک(HRUs) براساس مشخصه‌های فیزیکی آبخیز منعکس می‌کند

SWAT اجزاء سازنده هیدرولوژیک و واکنشهای متقابل آنها را به آسانی و تا حد امکان واقعی شبیه‌سازی می‌کند. علاوه بر رشد گیاه و محصول آن و اجزاء سازنده کمی آب، جریان عادی هیدرولوژیک در سطح شبیه‌سازی SWAT و روشهای انتخاب نهایی زیر سطح، برای زمانهای بارش برف و باران، ذوب شدن برف، روشهای منطقه Vadose ، تراوش، تبخیر، جذب گیاه، گلهای جانبی و جریانات آب‌زمینی به حساب می‌آیند، مقدار و ارزش انتخاب نهایی با استفاده از تکنیک اعداد منحنی تخمین زده می‌شود و اوج انتخاب نهایی با استفاده از فرمول اصلاحی گویا محاسبه می‌شود. بار و مقدار رسوب از آبگیر فرعی با استفاده از معادله اتلاف خاک اصلاح شه جهانی تولید می‌گردد. (Musle) مدل فاکتور  Cمعادله Musle را براساس مقیاس روزانه با استفاده از اطلاعات حاصله از مدول رشد گیاه به روز می‌کند بنابراین برای تغییر پوشش گیاه در طی چرخه رشد آن و تاثیر آن بر فرسایش حسبا می‌آید

3- نمایش حوضه و داده‌ها

از آبخیز بزرگ Creek در این برسی برای نمایش روش‌شناسی و مدلهای پیشرفته در این مطالعه استفاده می‌شود. این آبخیز در ایلنوس جنوبی واقع است این آبگیر 133 کیلومربعی نه تنها بر مقادیر زیاد آب جاری در رودخانه لاورکاش تاثیر می‌گذارد بکله مقدار رسوب بیشتری نسبت به دیگری رودهای فرعی واقع در این منطقه وارد می‌کند. کاربرد SWAT در آبگیری نظیر Creek بزرگ نیازمند زمین‌شناسی، خاک، مصارف زمین و داده‌های جوی بعلاوه جریان رود و داده‌های رسوب برای کالیبرگیری اثبات و بررسی احتمال می‌باشد

داده‌های بدست آمده، مدل ارزیابی ارتفاع رقومی محلول 10m (DEM) را از سرویس حفاظت از منابع طبیعی (NRCS) را شامل می‌شود که نقشه‌های استفاده از زمین با مقیاس 30m پیکسل در سالهای 19992000 از سرویس آمار کشاورزی ملی بدست آمد و همچنین نقشه خاک محلول m30 از منطقه ایلنوس جنوبی NRCS بدست آمد

داده‌های روزانه تاریخی مربوط به مقدار بارندگی حداکثر و حداقل دما ، سرعت باد، رطوبت، اشعه خورشیدی از مرکز جوی برای وضعیتهای جوی نزدیک بدست آمد

داده‌های مربوط به فواصل 15 دقیقه‌ای مقدار بارندگی بین ماه ژانویه 1990 تا اگوست 2001 ازMCC برای موقعیت واقع در Murphysboro بدست آمده برای مشتق گرفتن حداکثر یک ساعته و نیم‌ساعته ماهانه بارندگی برای کلیه ماه‌های سال استفاده شد

در نهایت داده‌های جریان رود و غلظت رسوب روزانه از اداره تأمین ایلنوس(SWS) برایPerk Road Station (PRS) بدست آمد. ایستگاه اندازه‌گیری که تقریباً 65 آبخیز زهکشی می‌کند و برای ‍Church Road Station  حدود 18 آبخیز را زهکشی می‌کند این داده‌ها بدست آورند

داده‌های جریان رود از تجمع رسوب روزانه از 25 ژوئن تا آگوست 2001 برای PRS و از 20 آوریل 2000 ، 26 آگوست 2001 CRS اندازه‌گیری شدند

ثبت تجمع رسوب متناوب بود و در طی اندازه‌گیریها کل شبهای روزانه 682،443 برای CRS,PRS به ترتیب موجود بودند نقشه اصلی خاک بدست آمده برای این بررسی از قبل تعیین شد تا طبقه‌ها را با سیستم SWAT هماهنگ نماید

4- شناسایی پارامتر

همانند مدل توزیعی، SWAT تقسیم مجدد آبخیز به آبخیزهای فرعی کوچکتر را اجازه می‌دهد. کوچکترین مقیاس فضایی در این بررسی مورد نظر است. براساس حساسیت مشروح فضایی و بررسی احتمال مدل ، آبخیز به 78 آبگیر فرعی تقسیم ‌می‌شود. هر کدام از این آبگیرهای فرعی توسط تعداد پارامترهایی که از کالیبرگیری بدست می‌آیند نشان داده می‌شوند. مقادیر معین پارامتر را واقعی و مناسب برای تعداد بزرگ پارامترهاست. عملی نیست و برای کاهش لازم تعداد پارامترهای قابل اندازه‌گیری فراخوانده می‌شوند

در این بررسی، سه شیوه شاخه‌ای برای انجام این کاهش بکار گرفته شده است

1-4- نمایش دادن

نمایش دادن به تعیین و شناخت پارامترهای مدل اشاره دارد که می‌تواند با درستی بسمت منطقی براساس محدوده  داده‌ها تخمین داده شوند. بررسی جزی‌تر بروشور مربوط SWAT به تعیین 35 پارامتر موجود در جدول 1 که به مدل جریان رود پیش‌بینی با رسوب مرتبط است کمک می‌کند، که تخمین آن از داده‌های موجود حاضر به تنهایی احتمال مهم را نشان می‌دهد و برای آن‌، اطلاعات غیرکافی وجود دارد که از طریق آن پارامترها مستقیماً برآورد می‌شوند. 16 پارامتر اول از 35 پارامتر، مقادیر یکدست آبخیز را تعیین می‌کند در صورتیکه مقادیر برای 19 پارامتر باقیمانده بین 78 آبگیر فرعی بسته به نوع خاک، مصرف زمین و ویژگیهای نقشه برداری زمین، اختلاف دارند. بنابراین اگر نمایش دادن تنها مکانیزم کاهش پارامتر مورد استفاده باشد. آلگوریتم برآورد پارامتر برای تشخیص مناسب‌ترین مقادیر بر یک صد پارامتر باقی می‌ماند که این یک کار دلهره آور است

در تلاش برای کاهش بیشتر تعداد پارامترهای قابل اندازه‌گیری، بعضی از ورودی‌های متغیر فضایی تحت فشار قرار می‌گیرند تا مقادیر یکدست روی آبخیز را تعیین نماید و بعضی دیگر بطور وسیعی دسته‌بندی می‌شوند

برای پارامترهای متعدد دیگر شامل اعداد منفی، ضریب سختیManing برای جریان زمینی و حداکثر گنجایش حفظ آب چه ، این مفهوم به در این بررسی به پارامتربندی بکار گرفته شده اشاره دارد

2-4- پارامترسازی

پارامتر بندی یک تکنیک برای انتقال  پارامترهای مدل واحد فضایی داده شده به دیگر واحدهای فضایی در آبخیز می‌باشد. در این بررسی، آبگیر فرعی نمایش انتخاب می‌شود را در آن مدل تجانسی از پارامترها و متغیرها فرض می‌شود

ارتباط میان پارامترهای مورد نیاز این واحد نمونه نمایشی، تخصیص مربوطه واحدهای تجانس دیگر با استفاده از اطلاعات موجود درباره پارامترها توسعه می‌یابد. بدین طریقع تعیین متغیرها در آبگیر فرعی نمایشی، تشخیص پارامتر مرتبط های در آبگیر فرعی دیگر را قادر می‌سازد. مثلاً برای پارامتربندی عدد منحنی CN ، آبگیر فرعی فرضی با پوشش و روکشهای علوله پوشیده می‌شود. بیشترین پوشش در این آبخیز است که تحت شرایط مراقبتی برای روکشهای علوفه در آبخیز و گروه A خاک مورد نظر رشد می‌کند

پس، ارتباط میان CN آبگیر فرعی نمایشی واقعی و دیگر آبگیرهای فرعی را دارای استفاده زمینی مشابه و شرایط مراقبتی بعنوان‌آبگیر فرعی نمایشی می‌باشند اما به گروه‌های مختلف خاک تعلق دارند، براساس مقادیر CN ارائه شده در این بروشور بدست می‌‌آید. علیرغم آن، ارتباط میان CN آبگیر فرعی دارای گروه خاک و استفاده زمینی و تعداد CN آبگیر فرعی را با پوشش علوفه پوشیده شده است توسعه می‌یابد . روشهای مشابه برای ارزیابی ضریب سختی maning برای جریان زمینی و حداکثر گنجایش حفظ آب چشمه  بکار گرفته می شود ترکیب نمایش و پارامتربندی، تعداد پارامترهای مورد نیاز برای کالیبرگیری تا 35 را کاهش می‌دهد.  اما این شاید ضروری وعاقلانه  نباشد که از الگوریتم جستجو برای کلیه 453 پارامتر باقیمانده استفاده کنیم . مخصوصا در آبخیزهای شاخابه بزرگ که داده های ثبت شده مربوط به چند سال را از دست داده اند ,کاهش تعداد پارامترهای قابل اندازه گیری تا حد ممکن ضروری می باشد

خوشبختانه ، خروجیها و بازده مدل به طور مساوی کلیه پارامترهای مدل حساس نمی باشند .اگر یک خروجی برای پارامترهای واقعی حساس نباشد ,تعیین برآوردهای انتخابی برای آن پارامترها منطقی می باشد وتنها پارامترهایی را که مدل به آن در طول کالیبرگیری حساس است در نظر داشته باشید

3-4- آنالیز پارامتر (SA )

(SA) برای تشخیص پارامترها ی مدل SWAT که بر متغیر بودن جریان رود  و  بار رسوب تاثیر می‌گذارد استفاده می شود بنابراین ، آنها اندازه گیری می شود

وقتی تعداد تکنیکهای موجود برای SA هدایت کننده وجود دارد. همه پارامترها بعنوان روشهای محلی  و جهانی طبقه بندی می شود . در تکنیکهای داخلی یا محلی ، واکنشهای خروجی توسط هر کدام از عوامل ورودی متغیر تعیین می شوند با ثابت کردن  عوامل دیگر به مقادیر ثابت انتخابی مشخص می شوند

هر چه آشفتگی ونگرانی از مقدار انتخابی بیشتر شود، نتایج  بررسی کمتر قابل اطمینان می‌با شد . همچنین، هر چه ارتباط میان  متغیرهای ورودی وخروجی بیشتر غیر خطی باشد که در مدلهای هیدرولوژیک بررسی  نمونه  می‌باشد، بکارگیری تکنیکهای داخلی متغیرهای بیشتر مشکل وغیر قابل اطمینان می باشد .  علاوه  بر این ،  وقتی نمونه برای  ورودی در زمان با ثابت کردن ورودیهای دیگر در مقادیر ثابت ترجیح داده می‌شود، روشهای داخلی برای واکنش متقابل میان ورودیها محاسبه نشود اگر وجود داشته باشد

برخلاف تکنیکهای داخلی، روشهای SAجهانی، محدوده داخلی با کل فاکتورهای ورودی را توضیح می‌دهد، و کلیه عوامل ورودی می‌توانند، بطور همزمان نوسان یابند و بررسی تغییر خروجی را بعنوان نتیجه کلیه ورودیها و واکنشهای متقابل احتمالی را اجازه می‌دهد

بررسی مونت کارلو. بعنوان شیوه پایه نمونه شناخته شد، روش واکنش سطح و شیوه فوریر ، تکنیکهای SA جهانی محمول هستند

روش SA جهانی مورد استفاده در این بررسی به خانواده روش‌های مونت کارلو متعلق می‌باشند. تقاضای زیاد محاسبه‌ای به طور نمونه شامل این SA ها وحاصل تولید اتفاقی و غیر منظم ورودی‌های از توزیعات وتقسیمات ویژه می‌باشند. با این وجود استفاده، از روش‌های استراژی و کارآمد  و مؤثر‌تر نمونه نظیر اهمیت‌‌ نمونه ونمونه  هایپرگوب لانین، می‌تواند به طور چشمگیری تقاضای محاسبه‌ای را کاهش دهد. بنابر‌این‌ این تحقیق، نمونه قرار را درSA بیشتر تولید وجمع می‌کنند. در بررسی مونت کارلو، وقتی تعداد کافی جفت‌های  ورودی- خروجی با استفاده از تکنیک نمونه ترجیحی بعنوان نمونه قرار می‌گیرند، بررسی بیشتر برای انجام و توضیح نقشه‌برداری ورودی- خروجی مورد نیاز است و ارائه مقیاس کمی وکیفی احتمال خروجی ایجاد شده توسط هر ورودی نیز مورد نیاز است

بررسی آسان نمودار پراکندگی و بررسی مرحله‌ای برگشت(رگرسیون)، شیوه‌های معمولی برای انجام این وظیفه هستند

براساس بروشور، هیچ بررسی قبلی در نمونه آبخیز دارای برگشت مرحله‌ای برای بررسی حساسیت بکار گرفته می‌شود. در حقیقت نمونه قبلی براساس تلاشهای SA در ذخایز آب مربوط به بررسیها از بررسی نمودار پراکندگی استفاده می‌کند که تنها زمانی رضایت‌بخش است که پارامترهای کمی بکار گرفته شوند

1-3-4- دامنه و تقسیمات ورودی، داده‌ها و نمونه‌گیری

تعیین دامنه ورودی و تشخیص نابعهای مربوطه تقسیم احتمال (PDFs) مشکلترین و عینی‌ترین مرحله در کاربرد بررسی مونت کارلو در بررسیهای هیدرولوژیک است. دلیل ایسنت که خیلی از پارامترهای مدل مستقیماً قابل اندازه‌گیری نیستند و حتی اگر چنین باشد، هزینه کمرشکن برای جمع‌آوری نمونه‌های زیاد و اتفاقی ورودی‌ها برای تعیین PDA واقعی آن و دامنه‌ها وجود دارد

هر کدام از اطلاعات موجود درباره آبخیز و پارامترهای آن شامل اطلاعاتی از ثبت مدل، بررسیهای قبلی است و بروشور دیگر باید برای ایجاد فرض آموزشی در این مرحله توضیح داده شود. هان و هلتون نشان دادند که تعیین دست دامنه ورودی روی نتایج SA موثرتر از آگاهی از PDFs واقعی باشد. علاوه بر این، در هر دو بررسی بیان شد که تقسیمات ساده باید برای توضیح بررسی‌های SA کافی باشد. بنابراین در این بررسی فرض می‌شود کلیه 35 پارامتر قابل اندازه‌گیری باقیمانده از یک تقسیم یکدست و متحد دنباله‌روی می‌کنند

به این نکته باید اشاره شود که انتخاب تقسیم یکپارچه بصورت سه جانبه کاملاً در نتیجه سادگی آن است. محققان حدس زدند که تقسیم مثلثی ممکن است بهتر بعضی از پارامترها را نشان دهد

دامنه‌ها برای هر ورودی تعیین شده دامنه‌ها براساس ترکیب بررسی بروشور بطورمشروح ، ثبت کاربر SWAT با بررسیهای قبلی انجام شده با SWAT و اطلاعات آبخیز شاخانه بزرگ قرار گرفتند

در بکارگیری نمونه‌گیری هایپرگوب لاتین در داده‌های نمونه از تقسیمات ویژه و دامنه‌ها، تعداد نمونه‌ها در ابتدا جمع و تولید شوند. در هر نمونه، مدل هیدرولوژیک شبیه‌سازی شده با استفاده از نقشه‌برداری، خاک، کاربرد زمین و داده‌های خوبی بدست آمده از آبخیز به اجرا درآمد

مجموعه‌های زمانی جریان رود و برآورد تجمع رسوب روزانه در سایت کالیبرگیری برای روزهایی انتخاب شد که داده‌های مشاهده شده روی آن موجود بود

مقادیر مشاهده شده و شبیه‌سازی شده خروجیهای متناظر با هم مقایسه شدند و حاصل‌جمع میدان ;. و معیار مورد استفاده بعنوان یک خروجی موجود در SA ارزیابی شدند

سیصد سند در مونت کارلو برای جریان رود و بار رسوب بوجود آمد. این جفتهای ورودی-خروجی داده‌ها بیشتر بررسی شدند تا عدم قطعیت خروجی هر کدام از عوامل ورودی و پارامترهای موثر برای هر کدام از دو خروجی را تعیین نماید

2-3-4- تعیین بخش حساسیت

بررسی مرحله‌ای برگشت استفاده می‌شود تا مقیاس حساسیت را که قادر به توضیح تاثیر عوامل منفرد ورودی‌ روی خروجیها بود را تعیین نماید

همانطور که از نام آن می‌شود فهمید، رگرسیون مرحله‌ای شامل ساخت مرحله به مرحله رگوسیونهای چندگانه است که با مدل برگشت ساده و ایجاد روی آن آغاز می‌شود. در هر مرحله، ورودی دیگر که قویاً بر عدم قطعیت خرونجی شرح داده نشده توسط مدل رگرسیون مرتبط است. مورد توجه باشد، تا وقتی که مرحله زمانی نمایان میشود که در آن مشمول عامل ورودی دیگر ، انجام مدل برگشت را تقویت و بهبود نمی‌بخشد. در خلاصه، بررسی مرحله‌ای رگوسیون شامل کارای ذیل است

1-           بررسی ارتباط میان هر کدام ار عاملهای ورودی و متغیر خروجی را انجام دهید و عامل ورودی خیلی وابسته به خروجی را انتخاب نمایید

2-           مدل ساده برگشت را میان متغیر خروجی و عامل ورودی که قویاً با متیغر خروجی مرتبط است را ایجاد نماید

3-           احتمال خروجی که هنوز وسط مدل رایج برگشت تعیین نشده را مشخص کنید ، بررسی همبستگی میان احتمال خروجی شرح داده نشده توسط مدل برگشت و کلیه عوامل ورودی را انجام دهید، عواملی را که در مراحل قبلی انتخاب شده‌اند خارج کنید و عامل ورودی مرتبط را مخشص نمایید

4-                          مدل چندگانه رگوسیون میان متغیر خروجی و عامل ورودی منتخب در این نقطه را ایجاد نمایید

5-           اجرای مدل برگشت معیار توقف را آزمایش کنید. مقیاس حساسیت برای هر کدام از عوامل ورودی متحول مشمول تعیین نمایید و اهمیت عوامل منفرد ورودی را آزمایش کنید

اگر هر کدام از این پارامترهای ورودی زیاد مهم باشند که اگر عوامل ورودی طبعیتاً وابسته باشند رخ می‌دهند، فاکتور مسافتت مدل برگشت دیگر استفاده کننده از عوامل ورودی باقیمانده را در می‌کند

متناوباً، عملکرد، معیار توقف، مقیاس حساسیت برای عوامل و اهمیت هر کدام از عوامل در مدل جدید را ارزیابی می‌کند

5- اگر معیار توقف راضی کننده نباشد، به مرحله 3 رجوع کنید.

مدل SA مورد استفاده در این بررسی بطور شدید سافت در مدلهای برگشت و بررسی همبستگی را شامل می‌شود. بایدتوضیح در شیوه آماری را ترجیح داد. وقتی بررسیهای رگوسیون و همبستگی براساس ارتباط توسعه یافته طولی میان متغیرهای خروجی و ورودی باشد. آنها وقتی ارتباط غیر خطی است ، ضعیف عمل می‌کنند

برای رفع این مشکل ، اغلب بیشتر از ردیف داده‌های منفرد استفاده می‌کنند تا داده‌های واقعی ، مفهوم بعنوان تغییر شکل ردیف شناخته می‌شود

استفاده از داده‌های متغیر ردیف حاصل از این بررسی بیشتر براساس پایداری روابط یکنواخت بود تا پایداری روابط خطی

ضریب تعیین چندگانه(R2) و مقدار P0 ، با مقدار، آمارهایی هستند که بعنوان معیار توقف استفاده می‌شوند

R2  شاخص و نماد گستردگی با دامنه است که با آن مدل رگرسیون ، عدم قطعیت خروجی را توضحی می‌دهد. مقادیر R2 بین صفر و یک قرار دارد. مقدار نزدیک «یک» نشانگر اینست که مدل رگوسیون برای اکثر عدم قطعیت در خروجی مشاهده شده محاسبه می‌شود

مقدار P0 احتمالی است که ضریب رگرسیون ، bi ، همراه با مقدار واقعی به بزرگی یا بزرگتر از ضریب ایجاد شده در بررسی ، بدست می‌آید اگر در واقعیت، هیچ ارتباطی میان متغیر ورودی و خروجی وجود نداشته باشد، در نتیجه، ارتباط ظاهر یکه با ضریب ساخته شده رگرسوین منتهی می‌وشد کاملاً شانسی ایجاد شده بود

مقدار P- کوچک نشان می‌دهد که احتمال رخ دادن ضریب برگشت، کمتر بطور شانسی می‌باشد و بیان می‌کند که پذیرش فرضیه که ضریب برگشت آن غیر صفر است قابل قبول است

مقدار R2 برای هر مدل برگشت توسعه یافته ارزیابی می‌شود و اختلاف در R2میان دو مدل متوالی رگرسیون بعنوان یکی از معیارهای توقف استفاده می‌شود. اگر اختلاف کمتر از آستانه تعیین شده کاربر باشد. روش مرحله‌ای رگرسیون به اتمام می‌رسد. و نشان می‌دهد که توجهات اضافی آخرین عامل ورودی بطور چشمگیری اجرای مدل را بهبود نمی‌بخشد

آمار  F بکار گرفته شد تا فرضیه‌هایی را آزمایش کنند که کلیه ضرایب مدل رگرسیون 1-1000-L می‌باشد، جائیکهL ، تعداد عوامل ورودی مشمول در مدل برگشت آزمایش می‌باشد، زیاد از صفر اختلاف ندارد و بنابراین مقدار P را تعیین می‌کنند

احتمال پیشرفت مقدار آماری F از f محاسبه شده با مقادیر  آزادی، توسط معادله ذیل تخمین زده می‌شود

 برتابع ناقص بنا دلالت دارد و M ، عدد یا تعداد کل نمونه‌هاست. احتمال مشابه مقدار P مقدار موجود د راین فرض بیشتر از آستانه تعیین کاربر باشد، فرضیه  قابل قبول است و رگوسیون مرحله‌ای تمام می‌شود و بر این امر دلالت دارد که اضافه کردن اخرین عامل ورودی بطور مهمی اجرای مدل را بهبود نمی‌بخشد

بنابراین ، مدل رگرسیون مرحله‌ای نارسانا خواهد بود اگر ملاک موجود مقدار P مرتبط به   فراتر از مقدار آستانه باشد یا اختلاف در   مدلهای رگوسیون متوالی کمتر از آستانه باشد

آزمایش برای ضرایب منفرد رگرسیون موجود در مدل رگرسیون انجام می‌شود تا خاطرنشان سازد که فرضیه رد می‌شود. در غیر اینصورت عامل ورودی حذف می‌شود و مدل برگشت دیگر با عوامل ورودی  ایجاد می‌شود. که این با استفاده از آمار  صورت می‌گیرد. احتمال بدست آوردن مقدار  از تقسیم  برای یا  با معادله زیر ارائه می‌شود

و  بر تابع ناقص دلالت دارد. احتمال مشابه مقدار P مرتبط با  است. اگر مقدار P عامل ورودی منفرد فراتر از احتمال تعیین شده کاربر باشد، در اینجا  است. عامل ورودی از مدل رگرسیون حذف می‌گردد

حالات بررسی مرحله‌ای رگرسیون ذیل بعنوان شاخص‌های کمی و کیفی اهمیت هر متغیر ورودی و مقیاس حساسیت استفاده می‌شود. دستوری که در آن متغیرها انتخاب می‌شوند و ورود به مدل رگرسیون یک شاخص کمی اهمیت آنها است که مهمترین متغیر در ابتدا انتخاب می‌گردد

اختلاف در مقادیر  مدلهای بعدی رگرسیون، مقیاس اهمیت برای آخرین متغیر را با نشان دادن مقدار خروجی محاسبه شده با اضافه کردن عامل ورودی به مدل رگرسیون را ارائه می‌دهد

یعنی عوامل بیرونی غیروابسته هستند، اختلاف در مقادیر  بر مدلهای رگرسیون ساخته شده در مراحل بعدی، کسر تغییر کل در متغیر خروجی را که برای منفرد ورودی اضافه شده در هر مرحله محاسبه می‌شود را مساوی می‌کند

مقادیر واقعی ضرایب استاندارد رگرسیون (SRC) در مدلهای رگرسیون، شاخصهای کمی اهمیت عامل ورودی می‌باشد. SRC،  مقیاس اهمیت براساس تاثیر حرکت هر متغیر از مقدار مورد نظر آن با کسر ثابت انحراف استاندارد آن را ارائه می‌دهد و قتی کلیه متغیرهای دیگر در مقادیر مورد نظر خود باقی می‌مانند

علامت و نماد ضریب برگشت استاندارد شده (SRC) نشان می‌دهد که متغیر خروجی یا ورودی تمایل به افزایش دارد یا کاهش یا همراه با هم (علامت مثبت) و یا اینکه هر دو بطور معکوس با هم عمل کنند. (علامت منفی)

3-3-4- نتایج کاربردی و بحث

 

برای دریافت پروژه اینجا کلیک کنید

|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
نویسنده : علی
تاریخ : جمعه 6 فروردين 1395
دانلود پروژه تحقيق اصطکاک تحت word

برای دریافت پروژه اینجا کلیک کنید

 دانلود پروژه تحقيق اصطکاک تحت word دارای 60 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود پروژه تحقيق اصطکاک تحت word   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه دانلود پروژه تحقيق اصطکاک تحت word

چکیده :  
مقدمه :  
ادبیات تحقیق :  
فصل اول :  
اکستروژن  
1ـ1ـ تعریف اکستروژن :  
1ـ2ـ تاریخچه اکستروژن و اصطکاک :  
1ـ3ـ ویژگی ها و کاربردهای اکستروژن :  
1ـ4- مزایا و معایب اکستروژن :  
1ـ5ـ روشهای مختلف اکستروژن :  
1ـ6ـ مزایا و معایب اکستروژن مستقیم و غیر مستقیم :  
مزایای اکستروژن مستقیم :  
معایب اکستروژن مستقیم :  
مزایای اکستروژن غیر مستقیم :  
معایب اکستروژن غیر مستقیم :  
1ـ7ـ چگونگی سیلان در فرآیند اکستروژن مستقیم :  
فصل دوم :  
تعیین فاکتور اصطکاک  
2ـ1ـ تجزیه و تحلیل تئوری :  
2ـ2ـ انجام روش های تجربی :  
2ـ2ـ1ـ مشخصات شمش های مورد استفاده  
2ـ2ـ2ـ انجام تست فشار  
2ـ2ـ3ـ انجام فرآیند اکستروژن و رسم منحنی های مربوطه  
2ـ2ـ4ـ منحنی تقسیم کار تغییر شکل  
2ـ2ـ5 تعیین فاکتور اصطکاک برای آلومینیوم  
2ـ2ـ6ـ بررسی فاکتور اصطکاک در اکستروژن مستقیم فولاد  
فصل سوم :  
کاهش نیرو در پروفیل حدیده  
3ـ1ـ قضیه کران بالایی :  
فرض های ساده کننده در روش کران بالایی  
3ـ2ـ روش Slab Method :  
فرض های ساده کننده در روش Slab Method :  
3ـ3ـ فهرست اصطلاحات  
3ـ4ـ آنالیز کلی کران بالایی برای اکستروژن میله :  
3ـ5ـ استنتاج میدان سرعت برای پروفیل حدیده منحنی شکل  
3ـ6ـ تعیین توزیع فشار روی سطح حدیده (Slab Method) :  
3ـ7ـ شبیه سازی به کمک المان محدود :  
3ـ8 انجام روش تجربی  
3ـ8ـ1ـ مشخصات شمش ها و حدیده های مورد استفاده  
3ـ8ـ1 انجام تست فشار  
3ـ8ـ2ـ انجام فرآیند اکستروژن مستقیم و رسم منحنی های مربوطه  
3ـ8ـ3ـ بررسی و مقایسه منحنی ها  
نتیجه گیری :  
منابع و مراجع :  

بخشی از منابع و مراجع پروژه دانلود پروژه تحقيق اصطکاک تحت word

 1- M.Bakhshi-Jooybari ,M.Sabori,M.Noorani-Azad.A.Gorji.Expremental and numerical study of energy consumption in  forward and backward rod  extrusion .J Mater process.2006;177:612-

 2- William f. hosford robber m.caddell metal forming second edition prentice hall

 3 Venkata Reddy N, Sethuraman R, Lal GK. Upper bound and finite element analysis of axisymmetric hot extrusion. J Mater Process Technol 1996;57:14-

 4 Avitzur B. Metal forming : processes and analysis. New York : Mc Graw Hill;

 5 Hosford William F, Caddell Robert M. Metal forming, mechanics and metallurgy. Prentice-Hall;

 6 Noorani-Azad M, Bakhshi-Jooybari M, Hosseinipour SJ, Gorji A. Experimental and numerical study of optimal die profile in cold forward rod extrusion of aluminum. J Mater Process Technol 2005;164-165:1572-

 7 Kwan Chin-Tarn. A generalized velocity field for axisymmetric tube drawing through an arbitrarily curved die with an arbitrarily curved plug. J Mater Process Technol 2002;122:213-

 8 Bakhshi-Jooybari M. A theoretical and experimental study of friction in metal forming by the use of forward extrusion process. J Mater Process Technol 2002;125-126:369-

 9 Wagener HW , Wolf J. Coefficient of friction in cold extrusion. J Mater Process Technol 1994;44:283-

  10 Depierre Experimental measurement of forcec during extrusion and correlation with theory. J.Eng. Ind ,Trans. Asme (1970)398-

 11- Tze-Chi Hsu,Chien-Chin Huang.The friction modeling of different tribological interfaces in extrusion process.J. Mater Process Technol 140(2003)49-

12- J.S.Ajiboye, M.B.Adeyemi. Effects of die land on the cold esxtrusion of lead alloy.J. Mater Process Technol.171(2006)428-

 13- شکل دادن فلزات / تالیف حسین تویسرکانی / انتشارات دانشگاه صنعتی اصفهان

14- الاستیسیته و پلاستییته / انتشارات دانشگاه باهنر کرمان

چکیده

عامل سایش پارامتر مهمی برای تعیین نیرو و انر ژی تغییر شکل  در فرایندهای شکل دادن فلزات است در این سمینار هدف تعیین فاکتور اصطکاک برای آلومینیوم در فرایند اکستروژن مستقیم و همچنین راهکارهایی برای به حداقل رساندن نیرو و انرژی مورد نیاز برای انجام فرایند اکستروژن مستقیم می باشد

مقدمه

در فرآیندهای شکل دادن فلزات اصطکاک بین قطعه کار و قالب و همچنین بین قطعه کار و حدیده نقش مهمی در بارگیری و انر ژی مورد نیاز طول عمر و دوام ابزار قابلیت شکل گیری مواد قطعه کار و کیفیت تمام شده محصول ایفا می کند

در انجام محاسبات عددی و تجزیه و تحلیلی از تنشها و کرنشها و بارهای شکل دهی و در پیشگویی تجربی بار وارده این خود نقش مهمی را ایفا می کند . اگر چه مهندسان مکانیک اصطکاک واسط را بسیار پیچیده می دانند این برای تعیین بار وارده از نظر کمی برای اهداف کاربردی لازم است

از این حیث این پارامتر ویژه اصلی  فاکتور اصطکاک یا ضریب اصطکاک می باشد آزمایشات مختلفی برای تعیین عامل سایش و ضریب اصطکاک در حین تغییر شکل پلاستیکی صورت گرفته است که در میان آنها تست فشار (compression test) برای تحقیقات بیشتر صورت گرفت

در یک تست فشار (compression test) جریان فلز و شکل هندسی حدیده ساده می باشند و فشار وارده نسبتا پایین بوده و سطح جدید و تازه که در حین تغییر شکل بوجود می آید کوچک می باشد بنابراین ویژگیهای سایشی  را نمی توان بطور مناسب و مطلوبی ارزیابی نمود بنابراین آزمایشات دیگری برای تعیین عامل اصطکاک صورت گرفت که در این اثر تحقیقاتی مدل نظری برای تعیین نیروی اکستروژن شکل گرفته است و با انجام چند آزمایش نشان داده می شود که این مدل برای اکستروژن سرد آلومینیوم خالص در شرایط خشک بسیار مناسب است اما برای اکستروژن گرم فولاد کربنی متوسط به خوبی عمل نمی کند

ادبیات تحقیق

 1ـ آقایان بخشی جویباری ، صبوری ، نورانی آزاد ، و حسینی پور از دانشگاه مازندران در سال 2007 بار تغییر شکل برای فرایند اکستروژن میله آلومینیومی به روش bound upper مورد بررسی قرار دادند و به این نتیجه رسیدند که بار مورد نیاز برای اکستروژن مستقیم آلومینیوم در حدیده های منحنی شکل علاوه بر هزینه ساخت زیاد آنها بسیار کمتر از بار مورد نیاز برای اکستروژن مستقیم آلومینیوم در حدیده های مخروطی است

2ـ آقایان صبوری ، بخشی جویباری ، نورانی و گرجی از دانشگاه مازندران در سال 2006 سایش حدیده و محفظه اکستروژن را مورد بررسی قرار داده به این نتیجه رسیدند که انر ژی مورد نیاز جهت فرایند اکستروژن مستقیم برای به حداقل رساندن نیروی اصطکاک این است که حدیده بصورت منحنی شکل باشد

3ـ آقای بخشی جویباری از دانشگاه مازندران در سال 2007 پارامتر اصطکاک در سطح قطعه کار محفظه و همچنین بین قطعه کار حدیده مورد بررسی قرار داده و به این نتیجه رسید که اکستروژن آلومینیوم در شرایط خشک به خوبی عمل می کند حال آنکه اکستروژن گرم فولاد کربنی روغن کاری شده به خوبی عمل نمی کند

4ـ آقایان j.s,ajiboye  و m.b.adeyemi از دانشگاه نیجریه تاثیر اصطکاک  بر فشار  و در نتیجه نیرویی وارده بر شمشهای فولادی وآلومینیومی را مورد مطالعه قرار داده اند .( bound upper)

1ـ1ـ تعریف اکستروژن

 فرآیندی را که طی آن یک شمش فلزی تحت تاثیر فشار از داخل قالبی با شکل خاص عبور داده و سطح مقطع آن را کاهش می دهند اکستروژن نامند . به عبارت دیگر اکستروژن به فرآیندی اطلاق می شود که بر اساس آن طی تغییر شکل پلاستیک حجمی از فلز یا غیرفلز، بر اثر وارد آوردن فشار درون یک قالب، شکل مقطع خروجی قالب را به خود می گیرد. این مقطع خروجی می تواند دارای یک یا چند دهانه باشد

فرآیند اکستروژن در مقایسه با دیگر روشهای شکل دادن روشی نسبتا جدید است

اکستروژن برای اولین بار در اوایل قرن نوزدهم مطرح و ابتدا لوله های سربی از این طریق تولید شد اواخر قرن نوزدهم یعنی حدود سال 1894 با ساخت دستگاههای برنجی از این طریق تولید شد از طرف دیگر مشکل دست یابی به فشارهای بسیار بالا نیز تا حدودی از طریق گرم کردن شمش اولیه و نتیجتا کاهش تنش سیلان فلز و همچنین استفاده از روانکارهای مناسب رفع گردید در صورتیکه شمش اولیه قبل از شروع شکل دهی حرارت داده شود اکستروژن را گرم و در غیر اینصورت سرد نامند

اکستروژن سرد بدلیل وجود مقاومت تغییر شکل بالا در تغییر شکل سرد برای تولید قطعات نسبتا کوچک و کوتاه و متقارن و به تعداد زیاد و با سطح مرغوبیت  و دقت ابعادی بالا بکار می رود ولی فرایند اکستروژن گرم به منظور تولید محصولات  فلزی نیمه تمام با طول نسبتا زیاد و مقطع ثابت مانند انواع پروفیلهای توپر و توخالی متقارن و غیر متقارن فولادی آلومینیومی مسی و آلیاژهای آنها  بکار می رود قطعاتی که از طریق اکستروژن سرد تولید می شوند به دلیل داشتن سطح مرغوب و دقت ابعادی بالا دیگر نیازی بکار اضافی  ندارند و یا فقط مقدا ر بسیار جزئی پرداختکاری برای آنها ضروری است به این ترتیب هم در مواد مصرفی و هم در وقت صرفه جویی به عمل می آید

امروزه اکستروژن سرد بیشتر برای تولید قطعاتی از وسایل نقلیه تجهیزات نظامی ماشین آلات  صنعتی و تجهیزات الکترونیکی بصورت انبوه بکار می رود

 

1ـ2ـ تاریخچه اکستروژن و اصطکاک

اولین ایده اکستروژن در سال 1797 توسط آقای جوزف جرماه مطرح شد. وی شرح پرسی را برای ساخت لوله از سرب یا هر فلز نرم دیگری در مقاله ای ارائه داده بود که می توانست لوله های با قطرهای مختلف و طول های دلخواه را به وجود آورد

در سال 1820 آقای توماس بور پرس هیدرولیکی را ساخت و در سال 1894 الکساندر از مس و برنج در اکستروژن استفاده کرد. استفاده موفقیت آمیز از فلزاتی مانند مس، سرب و برنج در فرآیند اکستروژن، استفاده آلومینیوم و فولاد را نیز ممکن ساخت. گابلام آمونتون در سال 1699 اصطکاک را توصیف کرد و شارل آگوستین اطلاعات زمان خودش را جمع آوری کرد و آنها را در سال 1779 در رساله ای منتشر کرد

1ـ3ـ ویژگی ها و کاربردهای اکستروژن

اولین و ضروری ترین ویژگی اکستروژن فشار بسیار زیاد است که این فشار باعث افزایش درجه حرارت در ناحیه در حال تغییر شکل می شود. بنابراین این عمل باید به آهستگی انجام شود تا مانع از ذوب شدن محصول شود

محصولات زیادی بوسیله ی اکستروژن بوجود می آید. شکل های مختلفی از آلیاژهای آلومینیوم بوسیله ی عمل اکستروژن بدون روانکاری در قالب های تخت ساخته می شود. در صنایع هسته ای اکستروژن موادی نظیر تیتانیوم، زیرکونیوم، بریلیوم و آلیاژهای فولاد بوسیله ی تکنیک های اکستروژن گرم صورت می گیرد. همچنین اکستروژن سرد برای ساخت محصولاتی با مقاومت مکانیکی بالا و کیفیت سطح خوب بطور وسیعی استفاده می شود. محدوده کاربرد اکستروژن، تولید از محصولات ساده متقارن تا اشکال با سطوح مقطع پیچیده مثل چرخ دنده و هزارخار وسعت دارد

1ـ4- مزایا و معایب اکستروژن

از مزایای اکستروژن می توان به موارد زیر اشاره کرد

تولید شکل های متنوع که با روش های دیگر مثل نورد قابل تولید نیستند
کاهش سطح زیاد در یک مرحله اکستروژن
قیمت پائین قالب. قالب های اکستروژن بعد از قالب های ریخته گری دارای پائین ترین قیمت هستند
دقت بالای فرآورده ها (دقت تا 00005 in قابل دسترسی است)
کیفیت سطح خوب محصولات و عدم نیاز به ماشین کاری
بهبود ساختمان دانه ای در اکستروژن گرم
بهبود بعضی از خواص مکانیکی در اکستروژن سرد به علت انجام کار سرد

از معایب اکستروژن می توان به موارد زیر اشاره کرد

پیچیده بودن جریان فلز در قالب. به همین دلیل برای جلوگیری از ترک و دیگر نقایص، در عمل اکستروژن دقت بالا بسیار مورد نیاز است
در اکستروژن غیرمستقیم ناخالصی ها و معایب سطح بیلت روی سطح محصول اثر می گذارد
یکسان نبودن جریان مواد در قالب به طوری که موادی که در نزدیکی سطح قالب قرار دارند، تغییرشکل بسیار بیشتری نسبت به مواد نزدیک به خط محور می دهند و این پدیده باعث سخت شدن کنترل فرآیند اکستروژن می شود

1ـ5ـ روشهای مختلف اکستروژن

فرایند اکستروژن بسیار ساده است بدین ترتیب که ابتدا شمش آماده شده ای را در محفظه دستگاه اکستروژن قرار می دهند سپس با اعمال فشار بالایی که بصورت هیدرولیکی یا مکانیکی به آن وارد می شود از داخل قالبی که در اتصال با محفظه است به سمت بیرون سیلان می یابد

فرایند اکستروژن بر حسب نوع تجهیزات بکار برده شده به دو روش اساسی
تقسیم بندی می شود

1-   اکستروژن مستقیم یا به جلو (forward extrusion)

2-   اکستروژن غیر مستقیم یا به عقب (backward extrusion)

در اکستروژن مستقیم جهت سیلان و جهت حرکت پیستون فشار کلی است  شکل (1ـ1) در صورتی که در اکستروژن غیر مستقیم سیلان ماده در خلاف جهت حرکت پیستون است هیچ حرکت نسبی بین شمش و محفظه وجود ندارد شکل (1ـ2) با توجه به توخالی بودن پیستون فشار در اکستروژن غیر مستقیم عملا محدودیتهایی از لحاظ نیرو در مقایسه با اکستروژن مستقیم در آن ایجاد می شود

1ـ6ـ مزایا و معایب اکستروژن مستقیم و غیر مستقیم

 

برای دریافت پروژه اینجا کلیک کنید

|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
نویسنده : علی
تاریخ : جمعه 6 فروردين 1395
دانلود پروژه مقاله ماکزيمم آنتروپي روشهاي فازي تحت word

برای دریافت پروژه اینجا کلیک کنید

 دانلود پروژه مقاله ماکزيمم آنتروپي روشهاي فازي تحت word دارای 60 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود پروژه مقاله ماکزيمم آنتروپي روشهاي فازي تحت word   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه دانلود پروژه مقاله ماکزيمم آنتروپي روشهاي فازي تحت word

خلاصه :  
مقدمه :  
2- علم اصلی ریاضی فلزی و شبیه سازی و فازی  
3- روش آنالیز شبیه سازی فازی (FSA) برا ی رتبه بندی فازی  
1-3 ایجاد اعداد تصدفی  
3-3 محاسبه ارزش میانگین و ماریانس نمونه  
ماکزیمم احتمال – آنتروپی مشاهدات دسته بندی شده پیوسته نسبت به فراوانی ها خلاصه :  
1-فرمول بندی مسئله  
2 مثال  
3-ماکزیمم احتمال قانون انتخاب  
31 . مثال (ادامه )  
32 .مشاهدات دسته بندی شده فازی ونا برابری فراوانی ها .  
33برای بدست آوردن n بزرگترچه باید کرد ؟  
34 قضیه ماکزیمم احتمال  
4-خلاصه وبحث  
برآورد غیر آماری ما معلوم با استفاده از نظریه مجموعه فازی  
خلاصه  
1-مقدمه  
2 فاصله فازی از مفروضات اندازگیری شده  
3 تعیین X0, *  
4 .پارامتر نگاشت  
5- محاسبه عددی برآورد .  
6 مواد مطالعه  
61 . توزیع نرمال  
62 . توزیع  
63 . توزیع مثلی  
64 . توزیع یکنواخت  
65 . خلاصه  
7 . مباحث  
8 نتایج  

خلاصه

یک روش جدبد برای رتبه بندی اعداد فازی بر پایه روش آنالیز شبیه سازی فازی ( FSA) پیشنهاد می شود یک روش ترکیبی شامل کاربرد ی کامپیوتر ور یاضی که ابتدا توسعه داده می شود این روش شهودی است و می تواند برای مرتب کردن اعداد فازی به آمانی مورد استفاده قرار می گیرد

روش به وسیله مثال های عددی بیان می شود و نشان می دهد که روشهای رتبه بندی اعداد فازی موجود می باشد و بخصوص زمانی که آن مشکل برای استفاده با روشهای دیگر حل مساله رتبه بندی اعداد فازی فرق دارد

مقدمه

در نظریه تقسیم , هر پیشنهاد بوسیله روشهای هدفمند یا مقدار مطلوب اندازه گیری می شود پیشنهادات بر پایه این مقادیر هدف تا زمانی که آنها اعداد crisp هستند رتبه بندی می شوند بنابراین اگر اعداد مطلوب برای اعداد فازی فرایند رتبه بندی زیاد ساده نیستند در عمل بیشتر مسائل واقعی دنیا نیاز به بر آورد و ارزیابی دانسته های نامعلوم برای تقسیم گیری هستند برای ارزیابی و مقایسه پیشنهادات مختلف در میان آنها , نیاز به رتبه بندی اعداد نامعلوم می باشد بعلاوه درک مطلوبترین یا بهترین انتخاب بطور کامل بر پایه رتبه بندی یا مقایسه است با توسعه نظریه نامعلوم , رتبه بندی اعداد زمانی یک نواخی شده است که بوسیله بیشتر محققین مورد مطالعه قرار گرفته است

تا زمانیکه بوسیله Prode , Dubos , jain  ارائه شد . این قیدها دسته بندی شده اند از جز به کل شامل یک عدد نا معلوم که به نسبت های عددهای فازی بسیار نسبت داده می شوند . با یک بررسی و مقایسه مجدد این روشها را در اکثر مکانها می توان یافت [1,2,15]  بر طبق نظریه  Li , Lee [7] دو راه برای روشهای رتبه بندی بخود دارد که اساسا نقشه رتبه بندی یا بدست آوردن یک سری فازی از پیشنهادات Optimal بازی امروزه Kerrel , wang [1,2,13] چندین قضیه را به عنوان خصوصیات با دلیل برای مشخص نمودن علمی بودن با منطقی بودن نظم اعداد فازی یا روش رتبه بندی آنها ارائه نمودند و بطور سیستماتیک یک نظم گسترده از روش های رتبه بندی اعداد فازی را پایه گذاری کردند

 Schwarz lander , sade[10] از اختلاف برای نظم دادن استفاده کردند تعریف آنها بسیار پیچیده بود و از علائم آنها هیچ درکی بدست نمی آید . آنها تنها از ارزشهای غیر منفی برای مقایسه نظم اعداد فازی استفاده کردند در صفحه بعد  Yoon [14] یک روش احتمالی برای رتبه بندی اعداد نامعلوم پیچیده پیشنهاد داد , اما این روش سکوت ماند نتیجه انتقال ممکن است تحلیلی برای تمام اشکال توابع فازی نباشد , بخصوص هنگامی که با تقسیم سرکار دارد  Liu[g] چهار روش را برای رتبه بندی فازی بر حسب احتمالات پیشنهاد داد .  Ducks tien , Tran[11] یک روش جدید را بر اساس فاصله زمانی توسعه دادند البته این روش می تواند بر بیشتر مسائل مربوط به آن برای مجدد روش , بی ثباتی در قدرت درک بیشتر , تفاوت ها و مشکلات نظیر گمراه کننده هستند علی رغم موجود روش های گوناگون , هیچکس رتبه بندی اعداد فازی را بطور موفقیت آمیز در همه حالات و موقعیت ها انجام دهد انگیزه ما نشان دادن یک روش ترکیبی بر پایه آنالیزهای شبیه سازی فازی که قادر به رتبه بندی اعداد فازی بطور موثر است می باشد

این صفحه به شرح زیر سازماندهی شده است . بخش بعد درک اصلی از ریاضی و شبیه سازی فازی را معرفی می کند در بخش ها یک روش جدید بر اساس آنالیز شبیه سازی فازی و الگوریتم آن برای رتبه بندی اعداد فازی پیشنهاد می شود سه مثال عددی ساده ارائه می شود و با روش ها در بخش 4 مقایسه می شود و بخش 5 نتیجه گیری می کند

2- علم اصلی ریاضی فلزی و شبیه سازی و فازی

اعداد فازی نوع اصلی از یک سری نامعلوم هستند که معمولی ومحدب می باشند گر چه این اعداد قابل تشریح با استفاده از روش های مخصوص و اشکال گوناگون هستند ولی اشکال مثلثی ذوزنقه ای بطور گسترده ای برای فازی مثلثی ( TFN) و عدد فازی ذوزنقه ای ( ZFN)

رقم های زیر برای تعریف روش رتبه بندی فازی مورد استفاده قرار می گیرد

R = عدد واقعی            = یک عدد فازی                   N = زمان شبیه سازی مجموع

– 1 = درجه اطمینان                       x M = نقشه عضو عدد فازی x

aj x M=عدد شبیه سازی  JTHدر یک سطح از عدد فازی x وj=1,2,….n

   = مقدار میانگین جمعیت = معنی           (0) p = احتمال وقوع واقعه در(0)

H0 = احتمال فرض صحیح است و ما می توانیم آنرا قبول کنیم

H1 = احتمال فرض غلط است و ما نمی توانیم آنرا قبول کنیم

(0,1) تشریح استاندارد معمولی

تعریف 1 – 2 بیایید CX یک سری بین المللی نشان دهیم سپس یک زیر مجموعه فازی xاز X بوسیله تابع عضو خودش تعریف می شود

                 [0 , 1]          X : x

که به عنصر اختصاص می دهد X یک عدد واقعی(x) x µ در فاصله [0,1] جائیکه ارزش (x) xµ در  x می باشد بدین ترتیب نزدیکترین ارزش x(x) µ تکی است بالاترین درجه عضو X در  x

تعریف 2-2 یک عدد فازی یک زیر مجموعه فازی که پوشش آن در R جائیکه

P(x) = { XR / µ x > 0}

تعریف 3-2 مجموعه فازی  از R , 10S  است یک X نقطه فازی نامیده می شود

اگر µxa(x) =         a   x  = a                                                                                                                  0  = x  a

تعریف 4-2 مجموعه فازی  [aa,ba] از R , b £a£0 یک سطح از فاصله فازی

µ[ax , bx ]=       a  a£x£b

         سایر نقاط  0   othe wise =

 F1 (a)= {[a a , b a] |  a < b , a , b R اگر  e [0,1] a برای هر a

تعریف 5-2 دسته عناصری که متعلق به مجموعه فازی  xحداقل درجه عضو a , دسته سطح a نامیده می شود و نشان داده می شود بوسیله {xx | xe (x) ³ a } , 0£a£1 xaتعریف 6-2 . با متغییر های فازی ذوزنقه ای مقدار مان متغییرهای فازی کاملا مشخص شده بوسیله چهار گانه ( r1,r2,r3,r4) از اعداد r3<r4    crisp £ r1<r2  که عضو تابع می تواند با شکل زیر نشان داده شود

x-n  / r2 – n    if      r1 £ x £ r2       

    1    if  r2 £ x £ r3                                                                                     x) =)µ            x-r4 / r3-r4  if  r3³x£r4                        

               سایر نقاط          

تعریف 7-2 اجازه دهید xیک متغیر فازی با تابع عضو µ باشد نشان دهید جمعیت pop =(µxa1 , µxa2, …… µxaN) پس معنی ارزش pop   تعریف می شود

 Pop =     J = 1  µxaJ  ,                  Tel x = pop

 پس ما می توانیم معنای ارزش x را به آسانی تا زمانیکه ما دقیقا از اعدادj , j = 1,2 ,……, N xaµتعریف 8-2 . علامت  s2 pop نمونه ای از متغییر جمعیت pop است و ارزش آن بوسیله و

 s2pop = 1/  N      (µxaJ -x)2 , tel S2pop  تعریف می شود

         J =

تعریف 9-2 فرض می کنیم وh بطور مشخص داده و متغییر آنها non – zero یعنی ارزش ناشناخته و متناهی هستند همچنین فرض می کنیم

H1: Ee – Eh d , H0 : Ee – Eh = d(1)بطور مشخصb داده , فرضیه آزمایش برای اختلاف به شرح زیر تعریف می شود

 If        (xh ) – ( Ee- Eh)    ³ m1  b/2  ,      H

S2e  +  S2h

N1     N

If        (xh ) – ( Ee- Eh)    ³ m1 -  b/2  ,                       H

S2e  +  S2h

N1     N

پس تحت شرایط  b , فرضیه آزمایشات بری اختلاف   Ee – Eh به شرح زیر تعریف می شود

 If        (xh ) – ( Ee- Eh)    ³ m1  b/2  ,                   H

S2e  +  S2h

N1     N

 If        (xh ) – ( Ee- Eh)    ³ m1 -  b/2  ,                       H

S2e  +  S2h

N1     N

اما هنگامی که ما فرض داریم H1 : Ee – E h > d , H0 : Ee – Eh = d یا

 H1 : Ee – E h > d , H0 : Ee – Eh £ d

 If        (xh ) – ( Ee- Eh)    ³ m1  b/2  ,                   H

S2e  +  S2h

N1     N

  If        (xh ) – ( Ee- Eh)    ³ m1 -  b/2  ,                       H

S2e  +  S2h

N1     N

   تعریف 10-2 اگرY , X اعداد مثبت فازی باشند مضربY , X به شرح زیر تعریف می شوند

Z X (0) Y

Za = xa . ya= [XLa Y La ´ XUa Y Ua ],”ae[0,1] اگر و فقط اگر

تعریف 11-2 اگر اعداد مثبت فازی باشندخارج قسمت Y,Xبه شرح زیر تعریف می شود

Z X (:) Y

Za = xa . ya= [XLa Y Ua ´ XUa Y La ],”ae[0,1] اگر و فقط اگر

3- روش آنالیز شبیه سازی فازی (FSA) برا ی رتبه بندی فازی

روش FSA برای حل همه نوع شکل عدد فازی مورد استفاده قرار بگیرد اما بدلیل اهمیت عدد فازی مثلثی (TFN) وعدد فازی ذوزنقه ای (ZFN) درعمل در این صفحه حذف روشن پیشنهاد شده حل این اعداد بطور مخصوص است زمانی که عدد فازی یک تابع عملی مثلثی داردآن TFNو با (LMV) = A نمایش داده می شود در جائیکه L , ,Vهم مرتبه X از متغییر های تابع مثلثی هستند و M£ U £L ما در جهت ارائه الگوریتم بطور واضح

 ما فرض بر این داریم که هر TFN یک عدد فازی معمولی است حتی الگوریتم مشابه می تواند برای اعداد فازی در معقولی نیستند توسعه یابد بصورت بی نظیری تبع عضو ذوزنقه ای در شکل 1 نشان داده شده است اندیشه روش ESA به شرح زیر است اول ایجاد یک عدد تصادفی از سطح مجموعه ای از اعداد شده فازی که به ترتیب بوسیله فازی شبیه سازی می شوند و پس معنی ارزش نمونه متغیر اعداد شبیه سازی شده بدست می آوریم بالاخره فرضیه آزمایشات برای بدست آوردن نتیجه رتبه بندی بدست می آید

1-3 ایجاد اعداد تصدفی

 

برای دریافت پروژه اینجا کلیک کنید

|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
نویسنده : علی
تاریخ : جمعه 6 فروردين 1395
دانلود پروژه مقاله کاربرد اولتراسونيک در صنايع غذايي تحت word

برای دریافت پروژه اینجا کلیک کنید

 دانلود پروژه مقاله کاربرد اولتراسونيک در صنايع غذايي تحت word دارای 23 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود پروژه مقاله کاربرد اولتراسونيک در صنايع غذايي تحت word   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه دانلود پروژه مقاله کاربرد اولتراسونيک در صنايع غذايي تحت word

چکیده:    
مقدمه    
بخش های سیستم های اندازه گیری به طریقه اولتراسونیک  
کاربردهای اولتراسوند در فرایند مواد غذایی  
1- presence / absence detection  
2- تعیین ضخامت  
3- تشخیص ماده خارجی  
4- اندازه گیری فلوریت  
5- اندازه گیری درجه حرارت  
6- تعیین ترکیب و میکرواستراکچر  
7- on-line sensors  
کاربرد اولتراسونیک در برخی مواد غذائی  
1- روغن ها و چربی های خوراکی  
2- فرآورده های لبنی  
3- گوشت و ماهی  
4- میوه ها و سبزی ها  
5- محلول های آبی و ژل ها  
6- سایر کاربردها  
نتیجه گیری  
فهرست منابع  

بخشی از فهرست مطالب پروژه دانلود پروژه مقاله کاربرد اولتراسونيک در صنايع غذايي تحت word

1- chyung. Ay. 1994. “ultrasonic attenuation measurements for estimating milk coagulation time”. Transactions of the ASAE; 37(3) 857-862. Ab
2- contreras. NI. 1992. “Analysis of the sugar content of fruit juices and drinks using ultrasonic velocity measurements”. International journal of food science & technology; 27(5) 515-529. Ab
3- Dahzong. Wang. 1996. “ultrasound- enhanced lactose hydrolysis in milk fermentation with lactobacillus bulgaricus”. Journal of chemical technology and biotechnology; 65(1) 86-92. Ab
4- Gaonkar. AG. 1995. “Food processing: Recent Development”
5- Gould. G.W. 1995. “New methods of food preservation”
6- Mc Clements. DJ. 1995. “Advances in the application of ultrasound in food analysis and processing”. Trends in food science & technology; 6(9) 293-299. Ab
7- Schuett. Abraham. I. 1992. “ultrasonics in sterilizatoin sinks. Application of ultrasonics in equipment for cleaning and disinfection of knives at the workplace in slaughter and meat cutting plants.” Fleischwirtschaft; 72(6) 864-867. Ab
8- Villamiel. M. 1999. “Effect of ultrasound processing on the quality of dairy products”. Milchwissenshaft; 54(2) 69-

چکیده:

 نحوه استفاده از امواج اولتراسوند در صنایع غذائی دو گونه است. کاربرد اولتراسوند با شدت بالا و با شدت پائین. از امواج اولتراسوند با شدت پایین به عنوان روش تجزیه‌ای در تهیه اطلاعات مربوط به ویژگی های فیزیکی و شیمیایی مواد غذایی استفاده می شود. در این حالت توان به کار رفته به حدی پائین است که پس از قطع امواج اولتراسونیک هیچگونه تغییری در خواص فیزیکی و شیمیایی مواد غذایی ایجاد نمی شود در نتیجه به این تکنیک non-destrusive یا غیر مخرب گویند و از آن می توان در اندازه گیری ضخامت، تشخیص جسم خارجی، اندازه گیری فلوریت، تعیین ترکیبات متشکله، اندازه ذرات، و غیره استفاده کرد. در حالیکه امواج اولتراسوند با شدت بالا که در آنها از توان بالا استفاده می شود به عنوان ابزاری در تغییر ویژگی های مواد غذایی نظیر هموژنیزه کردن، تمیز کردن، استریل کردن، حرارت دادن، امولسیفیه کردن، مهار فعالیت آنزیم ها و میکروبها و متلاشی کردن سلول، تشدید واکنش های اکسیداسیون، اصلاح گوشت، اصلاح کریستالیزاسیون، و . . . استفاده می شود

مقدمه

هدف تمامی صنایع فرایند کننده مواد غذایی تولید فرآورده‌ای با کیفیت بالا و تا حد امکان با حداقل هزینه می باشد که این فرآورده در اثر قرار دادن مواد اولیه در معرض یک سری از فرآیند ها مانند حرارت دادن، خنک کردن، فشار و اختلاط و. . . تولید می شود. تنوع در مواد خام و شرایط فرآیند سبب بوجود آوردن فرآورده‌ای با کیفیت غیر قابل پیش بینی می‌شود. بهمین دلیل بایستی کارخانجات مواد غذایی ویژگی های مواد اولیه را تعیین کرده و در هر مرحله از فرآیند، ماده غذایی و شرایط فرآیند را کنترل نمایند تا ویژگی های فراورده نهایی تا حد امکان مشابه ویژگی های مطلوب از قبل پیش بینی شده باشد

کاربردهای مختلف اولتراسوند در رابطه با مواد غذائی از حدود 50 سال پیش شروع شده و در حال حاضر کاربرد زیادی در کنترل عملیات فرآیند مواد غذایی پیدا کرده است پیشرفت در زمینه میکروالکترونیک سبب شده که بتوان از اولتراسونیک برای اندازه گیری های دقیق و با هزینه نسبتاً پایین استفاده کرد

در این روش یک طول موج صوتی با دامنه زیاد در درون ماده مورد آزمایش منتشر می شود. سپس از طریق سنجش تأثیر متقابل بین طول موج و ماده، اطلاعاتی در مورد خواص ماده بدست می آید

اولتراسوند مزایای اساسی نسبت به سایر روش های تجزیه‌ای و تکنیک های مورد استفاده برای کنترل عملیات فرایند مواد غذایی دارد، زیرا در حالیکه بسیاری از این روشها تخریبی و وقت گیر بوده و نیاز به نیروی کار زیاد و آماده کردن مقادیر زیادی نمونه و هم چنین وجود سیستم هائی که نور را از خود عبور می دهند دارند، این روش نیازی به آماده سازی نمونه نداشته، دقیق و نسبتاً ارزان است و می تواند به سرعت (کمتر از یک ثانیه) به طور غیر تخریبی در طی فرآیند مواد غذایی در تعیین ویژگی ها و کیفیت غذاها حتی مواد غذایی تغلیظ شده و از لحاظ نوری کدر نیز به کاربرده شود و بنابراین سبب افزایش راندمان و کاهش هزینه تولید محصول می شود. در نتیجه انتظار می رود در آینده اولتراسوند هم به عنوان یک ابزار اصلی تحقیق در تهیه اطلاعاتی راجع به رابطه بین خواص فیزیکو شیمیایی غذاها با ویژگی های ملکولی ساختمانی آنها و هم به منظور بررسی مداوم و بهتر کیفیت و خواص مواد غذایی در طی تولید و نگهداری به عنوان on-line sensor کاربرده فزاینده‌ای داشته باشد

از جمله کاربردهای مفید امواج اولتراسوند بررسی بافت، ویسکوزیته و غلظت برخی مواد غذایی جامد و مایع، اندازه گیری ضخامت، سطح و درجه حرارت و هم چنین تعیین ترکیبات میوه ها، سبزیها، گوشت، لبنیات و سایر محصولات است. علاوه بر این، استفاده از اولتراسونیک بدست آوردن اطلاعات را در مواردی که به کمک سایر روش ها دشوار است براحتی امکان پذیر می سازد. از آن جمله کنترل و بازرسی مداوم و اتوماتیک عملیات خط تولید نظیر تعیین اندازه ذرات تولید شده بوسیله هموژنایزر، آسیاب کلوئیدی و مخلوط کن می باشد، هم چنین تعیین میزان جرم گرفتگی لوله ها، ضخامت لایه‌های شکلات و شیرینی جات و ضخامت چربی یا بافت بدون چربی در گوشت و اندازه گیری مایعات موجود در تانکها و تعیین درجه حرارت در شرایطی که با استفاده از سنسورهای متداول امکان پذیر نمی باشد

بخش های سیستم های اندازه گیری به طریقه اولتراسونیک

اجزاء اصلی در بیشتر سیستم های اندازه گیری اولتراسونیک عبارتند از: 1- قطعه اندازه گیری یا measurement cell 2- مولد موج الکتریکی یا signal generator 3- مبدل یا transducer، 4- اسیلوسکوپ

ساده ترین و گسترده ترین تکنیک مورد استفاده در اولتراسونیک، تکنیک- pulse echo (پالس- اکو) است. مولد موج الکتریکی یک پالس الکتریکی با فرکانس و دامنه مشخص را تولید می کند. سپس مبدل، پالس الکتریکی را به پالس اولتراسونیک تبدیل می کند. این پالس از نمونه موجود در قطعه اندازه گیری عبور می کند و پس از برخورد با دیواره داخلی قطعه منعکس شده و به مبدل، جائی که در آن تشخیص داده می شود باز می گردد. در حقیقت مبدل به صورت یک دریافت کننده عمل کرده و پالس اولتراسونیک برگشتی را به یک پالس تبدیل می کند که بر روی اسیلوسکوپ آشکار می‌شود. از آنجائی که بخشی از پالس منعکس شده و بخش از آن عبور می کند یک سری از اکوها روی نوسان نما (اسیلوسکوپ) مشاهده می شود سرعت و ضریب تضعیف امواج اولتراسونیک با استفاده از این اکوها تعیین می شود
هر اکو مسافتی معادل دو برابر طول سلول (d) بیشتر از اکوی قبلی طی می کند و بنابراین، سرعت با اندازه گیری زمان تأخیر (t) بین اکوهای متوالی محاسبه می شود
از طرفی در صورتیکه سرعت اولتراسونیک در نمونه مشخص گردد، ضخامت آن را می توان تعیین کرد

کاربردهای اولتراسوند در فرایند مواد غذایی

1- presence / absence detection

وجود یا عدم وجود یک ماده در میان یک جفت مبدل یا بین یک مبدل و یک صفحه رفراکتومتر را می توان با اندازه گیری دامنه موج الکتریکی تعیین کرد. در صورتیکه ماده‌ای وجود داشته باشد دامنه موج الکتریکی کاهش خواهد یافت. این تکنیک برای شمارش تعداد موادی که از یک نقطه مشخص بر روی نوار نقاله عبور می کنند مفید است. در صورتیکه سرعت نوار نقاله مشخص باشد اندازه اشیاء را نیز می توان تعیین کرد
اولتراسوند می تواند برای تشخیص وجود یا عدم وجود یک ماده در قوطی، لوله، تانک و غیره نیز بکار برده شود. مبدل اولتراسونیک بر روی بخش خارجی دیواره آنها قرار داده شده و دامنه یک اکوی منعکس از قسمت داخلی دیواره اندازه گیری می شود این دامنه بستگی به مقاومت صوتی ماده موجود در تانک دارد. در صورتی که ماده ای در ظرف وجود نداشته باشد (امپدانس صوتی کم) دامنه اکوی دریافتی بیشتر از حالتی خواهد شد که ماده ای وجود داشته باشد

این نوع سنسور می تواند برای تعیین اینکه آیا میزان مایع موجود در تانک پایین تر یا بالاتر از حد بحرانی شده است یا نه، و برای تعیین وجود بقای ماده در لوله بکار برده شود و مخصوصاً در رابطه با وسایل و ظروفی که مشاهده داخل آنها امکان پذیر نیست مفید می باشد

مزیت این روش نسبت به سایر روش های تجارتی این است که در این جا تنها لازم است به یک طرف ظرف یا ماده مورد آزمایش دسترسی داشته باشیم

2- تعیین ضخامت

 

برای دریافت پروژه اینجا کلیک کنید

|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
نویسنده : علی
تاریخ : جمعه 6 فروردين 1395
دانلود پروژه تحقيق فناوري نانو و توليد مواد در ابعاد نانومتري تحت word

برای دریافت پروژه اینجا کلیک کنید

 دانلود پروژه تحقيق فناوري نانو و توليد مواد در ابعاد نانومتري تحت word دارای 60 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود پروژه تحقيق فناوري نانو و توليد مواد در ابعاد نانومتري تحت word   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه دانلود پروژه تحقيق فناوري نانو و توليد مواد در ابعاد نانومتري تحت word

چکیده :  
فصل اول  
مقدمه  
فصل دوم  
مروری بر منابع  
1-2- کامپوزیت  
2-2- تاریخچه تولید کامپوزیت های زمینه فلزی  
3-2- روش های تولید MMCs  
1-3-2- روش ذوبی در تولید MMCs  
1-1-3-2- روش گردابی یاVortex  
2-1-3-2- مخلوط سازی فاز دوم با مذاب  
3-1-3-2- ریخته گری کوبشی Squeeze Casting  
4-1-3-2- کامپوزیت های درجا In-Situ Composites  
2-3-2- روشهای حالت جامد در تولید MMCs  
3-3-2- تخلخل در کامپوزیت  
4-2- خوردگی کامپوزیت ها  
5-2- کامپوزیت های زمینه آلومینیومی :  
1-5-2- انواع کامپوزیت های زمینه آلومینیومی  
2-5-2- کامپوزیت های زمینه آلومینیومی تقویت شده با ذرات(PAMC)  
4-5-2-  کامپوزیت های زمینه آلومینیومی تقویت شده با الیاف پیوسته (CFAMC)  
5-5-2- کامپوزیت های زمینه آلومینیومی تقویت شده با بالک فیلامان MFAMC   
6-2- نانو کامپوزیت های ماتریس / سرامیکی  
1-6-2- نانو کامپوزیت های سرامیکی برای خواص مکانیکی مطلوب  
2-6-2- نانو کامپوزیت های کربن- کربن  
3-6-2- نانو کامپوزیت های ترکیب Sol – Gel  
1-7-2- روش انجماد سریع  
1-1-7-2- خواص RPS:  
2-7-2- روش های اسپری حرارتی  
3-7-2- روش آلیاژ مکانیکی  
مواد مورد استفاده :  
1-3-7-2- فرآوری پودرهای نانو کامپوزیتی با استفاده از آسیاب مکانیک  
2-3-7-2- آنالیز پودری نانوکامپوزیتی  
3-3-7-2- فشردن پودرهای نانوکامپوزیتی درون قوطی  
4-3-7-2- تهیه نمونه آلومینیومی بدون ذرات تقویت کننده با ترکیب مشابه نمونه نانوکامپوزیتی  
5-3-7-2- عملیات حرارتی نمونه اکسترود شده  
8-2- کاربرد نانو کامپوزیت ها  
1-8-2- نانو کامپوزیت ها برای پوشش دهی سخت  
2-8-2- پوشش های نانوکامپوزیتی در سیستم های هوا فضا  
3-8-2- نانوکامپوزیت ها درصنعت خودروسازی  
4-8-2- نانو کامپوزیت های زمینه پلیمری درصنعت هوا – فضا  
فصل سوم  
نتیجه گیری  
نتیجه گیری  
منابع  

بخشی از منابع و مراجع پروژه دانلود پروژه تحقيق فناوري نانو و توليد مواد در ابعاد نانومتري تحت word

  1-Department of Metallurgy , Indian of  science , sadana .vol25.  part 1&2 , February/April 2003. PP315 – 362

 2-“Nano composite science and technology” Edited by P.M.A jayan   L.S.schalder , P.V Braun . copyright ©2003 , ISBN 3-527-30359-

3-M.sharifi – E.eskandari , Mechanical alloying for fabrication of advance engineering Materials noyes publications

      4- آرامی ، حامد : “بررسی و ساخت نانوکامپوزیت نانوکریستالین Al/Al2O3 به روش آسیاب مکانیکی در جا ، دانشگاه صنعتی شریف بهمن

5- “کاربرد فناوری نانو در تقویت کامپوزیت ها و پلیمرها ” نشریه علمی ـ دانشجویی فضایی نانو، شماره سوم ، دی و بهمن 1384 ص 1 تا

6- رضایی اصغر ، یلدا نامخواه ،”نانو کامپوزیت ها و صنعت خودرو سازی” مجموعه مقالات هفتمین همایش علمی دانشجویی مهندسی مواد ص 251 آذر

7-”سمت و سوهای تحقیقات نانو کامپوزیت کمیته مطالعات سیاست نانو تکنولوژی”

8-“Q.C.suryan yana” Mechanical alloging and Milling progress in Material science vol.46,2001,pp-110-

  9-”الیاف کربن ” انجمن کامپوزیت ایران

چکیده

فناوری نانو و تولید مواد در ابعاد نانومتری موضوع جذابی برای تحقیقات می باشد که در دهه اخیر توجه بسیاری را به خود معطوف داشته است. نانو کامپوزیت ها نیز به عنوان یکی از شاخه های این فناوری جدید ، اهمیت بسیاری یافته اند به عنوان یک تعریف ، نانوکامپوزیت ها مواد مرکبی هستند که لااقل یکی از اجزاء تشکیل دهنده آنها دارای ابعاد در محدوده ی nm100-1 می باشد  و خود شامل سه دسته پلیمری ، سرامیکی و فلزی هستند .درمواد نانو کامپوزیت به جزء پخش شونده که به صورت الیاف، صفحات مسطح ریز، ذرات  و یا حتی حفره ها و ترکها و;. در ابعاد نانو می باشند، فاز دوم یا فاز تقویت کننده و همچنین به جزء پیوسته که می تواند در ابعاد نانومتری و یا بالاتر باشد فاز زمینه می گویند

در سال های اخیر مواد نانوکامپوزیتی به دلیل ویژگی های منحصر به فردی همانند استحکام زیاد، وزن کمتر ، کارایی بیشتر ، دوام و پایداری عالی و نیز رفتار مناسب در برابر آتش سوزی نسبت به مواد سختی نظیر بتن آلومینیوم  دارای بیشترین کاربرد در صنایع متعددی همچون صنعت هوا فضای صنعت نفت – گاز – صنایع پلاستیک ، صنعت برق و صنایع دریایی و صنعت خودروسازی می باشد

 مقدمه

علم مواد نانو کامپوزیت، توجه دانشمندان و مهندسان را در سالهای اخیر به خود جلب کرده است. نتایج بررسی استفاده از بلوکهای ساختمانی در ابعاد نانو، طراحی و ایجاد مواد جدید با انعطاف پذیری و پیشرفتهای زیاد در خواص فیزیکی آنها را ممکن می سازد. قابلیت ارتقاء کامپوزیت ها با استفاده از بلوکهای ساختمانی با گونه های شیمیایی ناهمگن در رشته ها و بخش های مختلف علمی مطرح گردیده است. ساده­ترین مثالها از چنین طراحی­هایی، به صورت طبیعی در استخوان اتفاق می­افتد که یک نانوکامپوزیت ساخته شده از قرص های سرامیکی و چسبهای آلی می باشد. بدلیل این که اجزاء سازنده یک نانو کامپوزیت دارای ساختارها و ترکیبات مختلف و خواص مربوط به آنها می باشد، کاربردهای زیادی را ارائه می دهند. از اینرو موادی که از آنها تولید می شوند، می توانند چند کاره باشند. با الگو گرفتن از طبیعت و براساس نیازهای تکنولوژی های پدید آمده در تولید مواد جدید با کاربردهای مختلف در آن واحد برای مصارف گوناگون، دانشمندان استراتژی های ترکیبی زیادی را برای تولید نانوکامپوزیت ها بکار برده اند. این استراتژی ها دارای مزایای آشکاری در تولید مواد دانه درشت مشابه می باشند. نیروی محرکه در تولید نانو کامپوزیت­ها، این واقعیت است که آنها خواص جدیدی در مقایسه با مواد رایج ارائه می دهند

 تصمیم برای بهبود خواص و پیشرفت ویژگی های مواد از طریق ایجاد نانو کامپوزیت های چند فازی مسئله جدیدی نیست. این نظریه از زمان آغاز تمدن و بشریت و با تولید مواد برای کارآمدی بیشتر برای اهداف کاربردی مورد نظر بوده است. علاوه بر تنوع وسیع نانو کامپوزیت های یافت شده در طبیعت و موجودات (مثل استخوان) , یک مثال عالی برای کاربرد نانو کامپوزیت های ترکیبی در روزگار باستان, کشف جدید ساختمان نقاشی های مایان می باشد که در دوران مسا مریکاس[1] بوجود آمدند. توصیف حالت هنر از این نمونه های نقاشی آشکار می سازد که ساختار رنگها, متشکل از ماتریسی از خاک رس آمیخته شده با مولکولهای رنگی آلی می باشد. آنها همچنین محتوی ناخالصی های ذرات نانوی فلزی محفوظ در یک لایه سیلیکاتی بی شکل همراه با ذرات نانوی اکسیدی روی لایه می باشند. این ذرات نانو تحت عملیات حرارتی و از ناخالص بوجود می آیند (Cr , Mn , Fe) که در مواد خام مثل خاک رس موجود می باشند ولی جمع و سایز آنها خصوصیات نوری رنگ نهائی را تحت تأثیر قرار می دهد. ترکیبی از خاک رس موجود که یک سوپر لاتیک می سازد که در ارتباط با ذرات نانوی فلزات و اکسیدی پشتیبانی شده روی لایه آمورف می باشد و این رنگ را یکی از اولین مواد مرکب مشابه نانو کامپوزیت های کاربردی مدرن می سازد. نانو کامپوزیت ها را می توان ساختارهای جامدی فرض کرد که دارای خواص مکرر بعدی با اندازه نانومتری بین فازهای مختلف سازنده ساختار می باشند. این مواد متشکل از یک جامد غیرآلی (بستر یا میزبان) محتوی یک جزء آلی و یا بالعکس می باشند و یا می توانند متشکل از دو یا چند فاز آلی/ غیرآلی در چند فرم ترکیبی باشند با این محدودیت که حداقل یکی از فازها یا ترکیبات, در ابعاد نانو باشد

مثالهایی از نانو کامپوزیت عبارتند از پوششهای متخلخل، ژل ها و ترکیبی از پلیمرها، مثل ترکیبی از فازهای با ابعاد نانو با تفاوتهای فاحش در ساختار, ترکیب و خواص می توان فازهای با ساختار نانوی موجود در نانو کامپوزیت ها را صفر بعدی (مثل خوشه های اتمی تشکیل شده)، تک بعدی (یک بعدی مثل نانوتیوپ ها) و دو بعدی (پوشش های با ضخامت نانو) و سه بعدی (شبکه های جاسازی شده) در کل مواد نانو کامپوزیت می توانند دارای خواص مکانیکی, الکتریکی, الکتریکی، نوری، الکتروشیمی، کریستالی و ساختاری باشند، نسبت به مواردی که دارای اجزاء واحد و یگانه هستند. رفتار چند کاره برای هر ویژگی بخصوص ماده اغلب بیش از مجموع اجزاء تکی می باشد

هر دو روش پیچیده و ساده برای ساختن ساختارهای نانو کامپوزیت وجود دارد یک سیستم عملی نانو کامپوزیت دو فازی، مثل کاتالیزرهای پشتیبان مورد استفاده در کاتالیزر محرک (ذرات نانوی فلزی جای گرفته روی پشتیبان های سرامیکی)، می توانند بسادگی با بخار دادن فلز روی لایه و یا پراکنده کردن توسط حلال شیمیایی آماده شوند. از طرف دیگر، ماده ای مثل استخوان که دارای ساختاری سلسله مراتبی با فازهای پلیمری و سرامیکی مرکب می باشد، با تکنیکهای ترکیبی حاضر, به سختی می تواند تکثیر شود. جدا از ویژگی های اجزاء تکی در یک نانو کامپوزیت، اشتراک اجزاءبا یکدیگر در بهبود یا محدود کردن خواص کلی یک سیستم نقش مهمی بر عهده دارند

با توجه به فصل مشترک زیاد و وسیع ساختارهای نانو, نانو کامپوزیت ها ارائه کننده فصل مشترک های زیادی بین فازهای ادغام شده تشکیل دهنده می باشند. خواص ویژه نانو کامپوزیت ها اغلب از اثر متقابل و تداخل فازهای آن در فصل مشترک ها حاصل می شوند. یک مثال عالی برای این مطلب, رفتار مکانیکی کامپوزیت های پلیمری پر شده با نانوتیوپ ها می باشد. هر چند افزودن نانوتیوپ ها می تواند امکان استحکام پذیری پلیمرها را افزایش دهد، یک فصل مشترک بـدون تـداخل فازها فقط برای بوجود آوردن مناطق ضعیف در کامپوزیت کارائی دارد و هیچ بهبودی در خواص مکانیکی آن بوجود نخواهد آمد. برخلاف مواد نانو کامپوزیت, فصل مشترک ها در کامپوزیت های موسوم, تشکیل دهنده یک شکستگی بسیار کوچکتر در فلزات بالک می باشد

ذکر این نکته حائز اهمیت است که تحقیقات در مورد کاربرد و روشهای تولید نانو کامپوزیت ها در طول دهه اخیر در بسیاری از کشورهای دنیا و در کشور ایران گسترش یافت و در دنیای پیشرفته کنونی باعث تکامل صنایع مختلف نظیر صنعت هوا و فضا  ،صنایع خودرو سازی و صنایع پزشکی و ; گریده است این پروژه در حال حاضر مروری بر سیستم های نانو کامپوزیت و نحوه فرایند تولید و خصوصیات و کاربردهای آنها دارد

 

1-2- کامپوزیت

محرک پیشرفت علم کامپوزیت را می توان بدست آوردن خواص جدید برای رفع نیازهای علوم جدید با توجه به ترکیب مواد دانست. کامپوزیت ماده ای است مشتکل از چندین جزء که به صورت محکم به هم چسبیده باشد. این تعریف بسیار گسترده است و شامل بسیاری از مواد نظیر چوب، بدن انسان و ; می شود. اما در صنایع و علم جدید کامپوزیت دارای تعریف محدودی می باشد. کامپوزیت ماده ای است مشتکل ازاجزای اولیه که به صورت فیزیکی به هم مخلوط شده اند و خواص بدست آمده از این اختلاط درتک تک اجزا به صورت جدا مشاهده نمی شود. این تعریف کامپوزیت را از مواد چند فازی که از ترکیب چند فاز و استحاله های فازی به وجود آمده است (کامپوزیت درجا) جدا می کند [1]

اصطلاح زمینه[2] و تقویت کننده[3] در علم کامپوزیت استفاده می شود. زمینه یک فاز نرمی است با قابلیت شکل پذیری انتقال حرارت و چکش خواری خوب که فاز سخت تقویت کننده دارای سختی بالا ضریب انبساط حرارتی کم می باشد را در خود جای داده است. فاز تقویت کننده می تواند پیوسته یا ناپیوسته باشد. کامپوزیت ها با توجه به فاز زمینه که می تواند پلیمر، سرامیک، فلز باشد و همچنین فاز تقویت کننده که شامل طبیعت شیمیایی آنها (اکسیدها، کاربیدها و نیتریدها) و نوع شکل آنها (الیاف پیوسته، الیاف کوتاه و ویسکرز کروی) و جهت گیری آنها و روش تولید آنها طبقه بندی می شوند. که این طبقه بندی عبارتست از

1- کامپوزیت زمینه پلیمری

2- کامپوزیت زمینه فلزی

3- کامپوزیت زمینه سرامیکی [1]

به دلیل اینکه این پروژه در مورد کامپوزیت زمینه فلزی است به بحث راجع این نوع کامپوزیت           می پردازیم

2-2- تاریخچه تولید کامپوزیت های زمینه فلزی

تولیدMMCs[4] به سال1940 میلادی حین بهبود سرمت2 باز می گردد. در گذشته اجزای غیر فلزی (سرامیکی) داخل فلزات یا آلیاژها را به عنوان عواملی که باعث تخریب خواص مکانیکی از جمله استحکام و انعطاف پذیری می شود ، می دانستند . در اواسط دهه ی 60 نیکل پوشش داده شده توسط پودر گرافیت را به وسیله جریان گاز آرگون در مذابی از آلیاژ آلومینیوم وارد کردند. این سرآغاز تولید و بررسی کامپوزیت های زمینه فلزی بود و تحت نام MMC معرفی شد. در سال 1968 در انجمن تکنولوژی هندوستان در کنپور ، شخصی به وسیله ی روش به هم زدن موجبات اتصال ذرات آلومین به آلومینیوم را فراهم نمود و باعث بوجود آمدن کامپوزیت های آلومینیوم- آلومین گردید. این اختراع تحت نام روش ریخته گری به هم زدنی نامیده شد[1]

در اوایل دهه ی هفتاد انجمن تکنولوژی ماساچوست روشی را به ثبت رساند که در آن اجزای غیر فلزی را در آلیاژهای شبه جامد در درجه حرارتی بین شالیدوس ولیکوئیدوس برای همان آلیاژ در مخلوط قرار می داد و تولیدکامپوزیت می کرد. در این پروسه تاخیر در تر شدن و دیر تر شدن ذرات باعث افزایش ویسکوزیته آلیاژ شبه جامد می شد. در دانشگاه رودکی یک ترتیب و نظمی برای فرو بردن ناخالصیها (ذرات) معرفی شد . این ترتیب و نظم به این شکل بود که ابتدا به وسیله به هم زدن، مذاب و پارتکیل ها را به صورت دوغاب در آمده و نیازی به هم زدن تا انتهای کار نباشد. در روشهای پراکنده سازی ذرات و روش آلیاژهای شبه جامد می توان متد های گوناگونی را بکار برد اما مقدار ذرات مصرفی محدود می باشد چرا که دوغاب مذاب حاوی ذرات برای ریخته گری یک حداقل سیالیت را لازم دارد. بقیه ی روشهای تولید کامپوزیت زمینه فلزی را در این بخش به طور مختصر، و در فصل روش های تلفیق به طور کامل توضیح داده می شود. مهمترین حسن این گروه حفظ خواص در دمای بالا می باشد. از دیگر مزایا می توان به استحکام کششی نهایی بالا، مقاومت به ضربه بالا، توانایی آزاد سازی تنش (بدلیل قابلیت تغییر شکل پلاستیک) و مقاومت به خوردگی بالا اشاره کرد [1]

 در تولید MMCs باید پارامترهای زیادی مد نظر قرار گیرند که مهمترین آن ها عبارتند از

الف) در انتخاب مواد باید دقت شود. با توجه به اینکه اغلب ، فاز دوم دارای جنس سرامیک می باشند و بیشتر سرامیک ها با فلزات واکنش می دهند و تولید ترکیبات بین فلزی[5] این مواد بسیار ترد و شکننده هستند و خواص را کاهش می دهند (البته باید در نظر داشت که واکنش باید انجام گیرد)

ب) چون هدف بدست آوردن یک ماده سبک است پس بیشترین کاربرد راMg ،Al تا حدودی  و در بعضی موارد خواهند داشت. خیس شوندگی ذرات باید در نظر گرفته شود . زمینه باید قابلیت تر شوندگی سرامیک را داشته باشد [1]


3-2- روش های تولید MMCs

1- Mesoamericas

1- Matrix

2- Reinforcment

1- Metal matrix composites

2- Cermet

1- Intermetalic

 

برای دریافت پروژه اینجا کلیک کنید

|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
نویسنده : علی
تاریخ : جمعه 6 فروردين 1395
دانلود پروژه مقاله تبديل يک نيروگاه توليد انرژي مازوت سوز به يک نيروگاه توليد انرژي گازسوز تحت word

برای دریافت پروژه اینجا کلیک کنید

 دانلود پروژه مقاله تبديل يک نيروگاه توليد انرژي مازوت سوز به يک نيروگاه توليد انرژي گازسوز تحت word دارای 63 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود پروژه مقاله تبديل يک نيروگاه توليد انرژي مازوت سوز به يک نيروگاه توليد انرژي گازسوز تحت word   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه دانلود پروژه مقاله تبديل يک نيروگاه توليد انرژي مازوت سوز به يک نيروگاه توليد انرژي گازسوز تحت word

1-1- مقدمه  
2-1-منابع و استانداردها  
2-اطلاعات فنی  
1-2-شرایط محیط :  
2-2- اطلاعات مربوط به خط لوله انتقال گاز از خط لوله سراسری به داخل نیروگاه  
3-توضیحات فنی  
1-3-ورودی سیستم  
2-3-فیلترهای تصفیه کننده گاز  
3-3-واحد اندازه گیری دبی  
انتخاب کنتور  
اصول کار کنتور توربینی:  
4-3- ایستگاه تقلیل فشار  
5-3- واحدهای اندازه گیری برای هر واحد از بویلرها  
6-3- سیستم سوخت گازهای مضر و زائد (FLARE)  
7-3- فلسفه کنترل  
8-3- مسیر یابی و نصب خطوط لوله گاز  
زنگ زدایی و آماده سازی لوله  
پوشش گذاری و عایقکاری لوله های گاز  
رعایت اصول نوارپیچی بر روی لوله ها  
تست صحت انجام عایقکاری  
عایقکاری گرم  
نکاتی چند در مورد آماده سازی لوله ها قبل از عایقکاری گرم  
بررسی و سنجش در کیفیت عایقکاری  
فیلترهای تصفیه گاز  
1-مقدمه  
2-کد و استاندارد  
3-شرایط طراحی و عملکرد  
2-3- فشار  
3-3-دما  
4- دیدگاه کلی و عمومی  
5-کنترل  
6- MATERIAL  
7- ساخت  
8- رنگ کاری  
9- تست  
10-بازرسی  
انتخاب فیلتر  
Rotating Member Oil Bath Scabber  
بحث عمومی در رابطه با تمیز کننده های با بستر روغن  
Filter  
پارامترهای مهم برای انتخاب فیلتر عبارتند از:  

1-1- مقدمه

با گذشت زمان و پیشرفت تکنولوژی در زمینه نفت و گاز هر روز شاهد هستیم که سیستم های قدیمی که با انواع سوخت فسیلی سنگین مانند مازوت و نفت و گاز کار می کردند دچار تغییر و دگرگونی می شوند. ا مروزه به دلیل مسائل و مشکلات زیست محیطی و آلودگی ناشی از سوخت اینگونه سوخت های فسیلی، پائین بودن راندمان حرارتی، عمر کم تجهیزاتی که در ارتباط با این سوختها هستند و غیر اقتصادی بودن آنها دیده می شود که صاحبان صنایع به فکر جایگزینی این منابع با گروه دیگری از سوخت ها هستند یکی از بهترین جایگزین ها گاز طبیعی است که هم ارزان و در دسترس بوده و علاوه بر آن آلودگی بسیار کمی برای محیط بوجود می آورد

در ادامه در طی این طراحی هدف تبدیل یک نیروگاه تولید انرژی مازوت سوز به یک نیروگاه تولید انرژی گازسوز می باشد بدیهی است که این نیروگاه در سیکل رانکین کار می کند بنابراین کافی است سیستم تولید انرژی نیروگاه از حالت مازوت سوز به گاز سوز تبدیل شود. این عملیات از خط انتقال سراسری گاز شروع شده و تا مشعل های مربوطه به هر دیگ بخار ادامه دارد

بدلیل اهمیت طرح و استراتژیک بودن فعالیت یک نیروگاه هیچگاه نباید نیروگاه بر اثر قطع جریان گاز دچار خاموشی شود به همین دلیل طراحی باید به گونه‌ای باشد که هر گونه استرس ناشی از وزن و تنش های حرارتی که ممکن است در هنگام نصب تجهیزات و در زمان عملکرد سیستم بروز کند را تحمل نموده و علاوه بر آن هر گونه دبی ناگهانی و فشار تناوبی را که حداکثر آنها کمتر از شرایط تست است را تحمل کند

با توجه به مطالب فوق باید برای تعمیرات و نگهداری سیستم مربوطه اقدام لازم را بعمل آورد. این مطلب بیانگر آن است که در دسترس بودن تجهیزات و سایر اجزا که نیاز به تعمیر و نگهدرای و تعویض دارند از اهمیت خاصی برخوردار است این دسترسی شامل دسترسی اپراتور به تجهیزات، دسترسی ماشین آلات حمل و نقل برای تجهیزات سنگین می باشد که باید جاده های مورد نظر به طور کامل در نظر گرفته شود

برای عملکرد بهینه سیستم و کنترل مناسب نیازمند یک سری تجهیزات ابزار دقیق هستیم که در ادامه به طور مفصل در بخش های جداگانه به هر یک از موارد فوق خواهیم پرداخت

2-اطلاعات فنی

1-2-شرایط محیط

- دما :            حداکثر – حداقل- متوسط         (Cْ)55/-10/

-رطوبت نسبی:  حداکثر – متوسط                   100%- 69%

-کد زلزله :                                             (براساس کد french) 1,

-ارتفاع از سطح دریا:    نیروگاه در ارتفاعی هم سطح با دریاست

-سرعت باد      حداکثر- حداقل                              31-2 (M/S)

2-2- اطلاعات مربوط به خط لوله انتقال گاز از خط لوله سراسری به داخل نیروگاه

-دبی حجمی                          824/0      Nm3/hr

-فشار عملکرد                         8-10              barg

-فشار طراحی                         16                 barg

- طول تقریبی                         600                  M

3-توضیحات فنی

1-3-ورودی سیستم

همانطور که گفته شد گاز مورد نیاز از خط لوله سراسری گاز تأمین می شود پس از انشعاب از خط لوله سراسری، گاز وارد سیستم سوخت نیروگاه می شود. برای جداسازی سیستم از خط لوله یک شیر اصلی که وظیفه قطع و وصل جریان گاز را به عهده دارد تعبیه شده است. این شیر به طور خودکار به وسیله سیگنالهایی که دربافت می کند عمل می کند. هر گاه فشار گاز در سیستم بیش از حد بالا یا پائین برود این شیر بطور خودکار قطع می شود در ضمن هر گاه دمای مشعل های دیگ های بخار بسیار بالا رود این شیر به طور خودکار بسته می‌شود

پس می توان گفت سیگنالهای مورد نیاز از سوی بویلرها و کنترلهای موجود در سیستم تأمین می شود. در ادامه در مبحث کنترل به چگونگی تولید این سیگنالها می پردازیم

همانطور که کاملاً مشخص است ممکن است این شیر نیاز به تعمیر و تعویض داشته باشد بنابراین باید یک خط Bay pass برای آن در نظر گرفت

سایز خط ورودی 20 اینچ در نظر گرفته شده است و حداکثر سرعت سیال داخل آن 20 متر بر ثانیه است مشخصات مکانیکی لوله بر اساس ASMEB31.3  و ضخامت جداره برابر با  127mm و حداکثر خوردگی ناشی از فرسایش برابر با 3mm ، در فشار طراحی 16barg در نظر گرفته شده است

به دلیل بزرگ بودن سایز خط لوله و شیرهای موجود شیر اصلی به وسیله موتور الکتریکی باز و بسته می شود که این موتور به وسیله سیگنال دریافتی کار می‌کند

برای خروج گاز باقیمانده در لوله ها به هنگام تعمیر و نگهداری از یک خط 2 اینچ که حاوی نیتروژن است استفاده می شود. بعد از خروج گاز از شیر اصلی مسیر به دو خط مساوی 20 اینچ تقسیم شده و بسوی فیلترهای تصفیه گاز می رود قبل از ورود به فیلترها دو شیر اصلی از نوع Ball valve در مسیر تعبیه شده است که برای جداسازی فیلترها از سیستم به منظور تعمیر و تعویض بکار می رود

           ·        به نقشه های زیر رجوع شود

1- FSP- PR-

2-FSP- PR-

     ·   جهت مشاهده اطلاعات طراحی به ضمیمه 1 که شامل گزارش اطلاعات و پردازش آنها که به وسیله نرم افزار hycyc مدل شده است توجه فرمائید

این نرم افزار که اساس طراحی تمام پالایشگاه ها و سیستم های مربوط به نفت و گاز و پتروشیمی است با مدل کردن واقعی طرح کلیه اطلاعات از قبیل اندازه خط لوله، فشار، ده، سرعت، تبادل انرژی، و …. را در اختیار ما قرار می دهد

 2-3-فیلترهای تصفیه کننده گاز

          به دلیل وجود میعان در داخل خط لوله و مایعات موجود در آن همچنین وجود ذرات جامد ناشی از نصب خطوط لوله و گرد و خاک داخل لوله گاز ورودی باید تصفیه شود. این امر به دلیل اینکه این گاز بعداً وارد قسمت تقلیل فشار می شود دارای اهمیت خاصی است چون سیستم تقلیل فشار نسبت به هر گونه جسم جامد و مایع حساس است همچنین در بویلرها نیز وجود ذرات جامد و مایع باعث بروز مشکلات جدی خواهد شد

پس از خروج گاز از شیر اصلی و وارد شدن آن به فیلترها عملیات زیر صورت می گیرد

نازل N1  ورودی گاز بر روی فیلترها قرار دارد واین فیلترها به صورت افقی قرار دارند ابتدا گاز وارد مرحله اول فیلتر شده و در آنجا قطرات مایع آن به وسیله اختلاف وزن قطرات مایع از گاز جدا می شود بعد از آن گاز به مرحله بعدی رفته و قطرات مایع در ته فیلتر ته نشین می شود بعد از آن گاز که دارای رطوبت و گرد و خاک است وارد مرحله دوم شده و در آنجا به وسیله نوع خاصی از فیلترهای جدا کننده خشک و عاری از گرد و غبار می شود رطوبت گرفته شده دوباره ته نشین می‌شود و گرد وخاک و ذرات جامد درون فیلتر باقی می ماند بعد از مدت زمان مشخصی فیلترهای مرحله دوم تعویض خواهد شد

سپس گاز خشک و تصفیه شده از نازل خروجی N2 خارج شده و به سوی ایستگاه اندازه گیری می رود. هر گاه سطح مایعات داخل فیلتر به حد کافی بالا بیاید این مایعات به مخزن ذخیره فرستاده می شود. که در زیر این فیلترها قرا ردارد این کار به وسیله دو سنسور N9A/B انجام می شود که با اندازه گیری سطح مایع و بالا آمدن آن از حد معینی مایعات را به درون منبع ذخیره می فرستد. هر گاه سطح مایعات درون منبع ذخیره بالا بیاید به وسیله دو سنسور دیگر N7A/B که باعث باز شدن دو نازل N6,N5 می شوند مایعات درون منبع تخلیه شده و به سوی واحد تصفیه آب می رود

برای کنترل فشار داخل این فیلترها مقداری فشار سنج بر روی آن نصب می شود که نازل شماره N8   برای این کار در نظر گرفته شده است

جهت خروج فشار اصلی درون این فیلترها یک شیر اطمینان که به وسیله فشار باز می شود در نظر گرفته شده است. که هر گاه فشار از حد معینی بالاتر برود به طور خودکار عمل می کند. خروجی این شیر به داخل سیستم FLARE که باعث سوزاندن گازهای مضر است می رود که بعداً توضیح داده خواهد شد. نازل شماره N4 جهت شیر اطمینان تعبیه شده است

به منظور تخلیه گاز و مایعات درون فیلتر در زمان تعمیر کلیه ورودی ها و خروجی را بسته و مقداری گاز نیتروژن به داخل آن تزریق می کنند که باعث خروج گازها و مایعات باقیمانده می شود. سپس این گاز ها به همراه گاز نیتروژن به وسیله یک شیر کوچک که در خط شیر اطمینان و قبل از آن است خارج می شود این شیر بطور دستی باز و بسته می شود و همانطور که در نقشه ها مشخص است خروجی این شیر نیز به سیستم FLARE است. جهت تزریق نیتروژن از نازل شماره N3 استفاده می شود

پس از تصفیه گاز و خروج آن از فیلترها، گاز به سوی ایستگاه اندازه گیری دبی فرستاده می شود

سایز خروجی و فشار خط همچنان ثابت است و تمامی مشخصات مکانیکی ثابت است. بعد از خروجی فیلتر یک شیر قرار دارد که باعث جداسازی فیلتر و بسته شدن مسیر گاز به هنگام تعمیر و تعویض است

به دلیل اهمیت این فیلترها طراحی آنها بسیار مهم است. درانتها چگونگی طراحی این فیلترها به صورت کامل توضیح داده شده است

3-3-واحد اندازه گیری دبی

 

برای دریافت پروژه اینجا کلیک کنید

|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
نویسنده : علی
تاریخ : جمعه 6 فروردين 1395
دانلود پروژه تحقيق کپي رايت تحت word

برای دریافت پروژه اینجا کلیک کنید

 دانلود پروژه تحقيق کپي رايت تحت word دارای 55 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود پروژه تحقيق کپي رايت تحت word   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه دانلود پروژه تحقيق کپي رايت تحت word

مقدمه    
تاریخچه    
فصل اول    
قوانین بین المللی حق تکثیر    
مبحث اول-کنوانسیون برن برای حمایت از آثار ادبی و هنری    
بند اول-کشورهای عضو کنوانسیون برن    
بند دوم-ایران و حق تکثیر    
مبحث دوم-قوانین کپی رایت    
بند اول- اخذ حق تکثیر    
بند دوم- مدت زمان حق تکثیر     
بند سوم-حقوق انحصاری حق تکثیر     
بند چهارم-کپی رایت چیست؟    
بند پنجم-کپی رایت از چه زمانی آغاز می شد؟    
بند ششم- برای رقابت باید چه کاری انجام دهیم.    
بند هفتم- کپی رایت چیست؟    
بند هشتم- چه زمانی کپی رایت یک اثر به پایان می رسد؟    
بند نهم- قانون کپی رایت چه می گوید؟    
بند دهم- کپی رایت در اینترنت    
بند یازدهم- گرافیک ها و تصاویر لینکی رایگان    

فصل دوم
باید ها و نباید های کپی رایت در قوانین داخلی و اسناد بین الملی    
مبحث اول- درآمد    
مبحث دوم- باید ها و نباید ه ایک     
الف- حقوق مورد حمایت    
ب- آثار مورد حمایت    
ج- شرایط مورد حمایت    
فصل سوم: حقوق کپی رایت     
مبحث دوم: ثبت اثر    
الف-ثبت کتاب و رساله    
ب-اثر سمعی و بصری    
پ – اثر موسیقی    
ت-  نقاشی و تصویر    
ث- در مورد پیکره و مجسمه    
ج- اثر معماری    
چ – اثر عکاسی    
ح- در مورد اثر ابتکاری مربوط به هنرهای دستی    
خ – “       “     “   بر پایه فرهنگ عامه یا میراث فرهنگی     
د- در مورد آثار سینمایی    

فصل چهارم
نقش شبکه ها وکامپیوترها در کپی رایت     
مبحث اول- شبکه ها و کامپیوتر ها    
مبحث دوم- بررسی کرک و کپی رایت از منظر اخلاقی، شرعی و قانونی    
بند اول- کِرَک    
بند دوم-بررسی کرک از دیدگاه اخلاقی    
بند سوم-بررسی کرک از دیدگاه شرعی    
بند چهارم- بررسی کرک از دیدگاه قانونی    
فصل پنجم- کپی رایت     
مبحث اول- بررسی کپی رایت در سطوح مختلف    
بند اول- ایران و کپی رایت     
بند دوم- کپی رایت بین المللی    
بند سوم- کپی رایت در اینترنت    
بند چهارم: گرافیک ها و تصاویر لینکی رایگان    
مبحث دوم-  سرقت فرهنگی در فضای مجازی    
بند اول- انتشار محتوای مجرمانه    
بند دوم- کاربران نا آگاه از مالکیت معنوی    
بند سوم- موانع و راهکارهای کپی رایت در ایران    
نتیجه گیری    
منابع    

بخشی از فهرست مطالب پروژه دانلود پروژه تحقيق کپي رايت تحت word

1      آیتی، حمید(1375)، حقوق آفرینش‌های فکری، نشر حقوقدان، تهران

2      الستی، ساناز(1383)، حقوق کیفری مالکیت ادبی و هنری، نشر میزان، تهران

3      الماسی، نجادعلی و بهنام حبیبی(1386)، جلوه‌های فولکلور و سیستم‌های حقوق موجود، نامه مفید، ش61

4      انصاری، باقر، جهانسوز شیخ الاسلامی، مهدی مهدی زاده و تیلا پروانه(1381)، مسؤولیت مدنی رسانه‌های همگانی، انتشارات ریاست جمهوری، تهران

5      پورمحمدی، شیما (1385)، حقوق اجراکنندگان، تولیدکنندگان آثار صوتی و سازمان‌های پخش رادیو تلویزیونی،پایان نامه دوره کارشناسی ارشد حقوق خصوصی، دانشگاه تربیت مدرس

6      جعفرزاده، میرقاسم (1383)، درآمدی بر حقوق آفرینش‌های فکری، پلی کپی دانشکده حقوق، دانشگاه شهید بهشتی

7      جعفری لنگرودی، محمدجعفر (1373)، حقوق اموال، گنج دانش، تهران

8      حضرتی شاهین دژ، صمد (1378)، مطالعه تطبیقی حقوق معنوی مؤلف، فصلنامه پژوهشی دانشگاه امام صادق، ش 10

9      ساعد وکیل، امیر (1383)، حمایت از مالکیت فکری در سازمان جهانی تجارت و حقوق ایران، انتشارات مجد، تهران

10  شفیعی شکیب، مرتضی (1381)، حق مؤلف، قوانین و مقررات ملی و بین‌المللی، خانه کتاب، تهران

11  شورای عالی انفورماتیک کشور(1382)، حقوق پدیدآورندگان نرم افزار، سازمان برنامه و بودجه، مرکز مدارک اقتصادی، اجتماعی و انتشارات، تهران

12  صادقی نشاط، امیر (1376)، حمایت حقوق پدیدآورندگان نرم افزارهای کامپیوتری، انتشارات سازمان برنامه و بودجه

13 صالحی، جواد (1386)، کپی رایت و تعامل آن با مالکیت فکری، تعالی حقوق، ش18

14  صالحی، جواد (1387)، کپی رایت در بستر قانون و تعامل آن با مبانی فقهی، دادرسی، ش68

15  صفایی، حسین (1375)، مقالاتی درباره حقوق مدنی و تطبیقی، نشر میزان، تهران

16  صفایی، حسین (1350)، مالکیت ادبی و هنری و بررسی قانون حمایت حقوق مؤلفان و مصنفان و هنرمندان، نشریه دانشکده حقوق و علوم سیاسی، ش6

17  طارم سری، مسعود (1382)، جایگاه ایران در نظام بین‌المللی حمایت از حقوق مالکیت فکری، سخنرانی در مرکز مطالعات عالی بین‌المللی دانشگاه تهران، 1/10/

18  عبادی، شیرین(1380)، حقوق ادبی و هنری، نشر چشمه، تهران

19  کاتوزیان، ناصر (1376)، دوره مقدماتی حقوق مدنی، اموال و مالکیت، نشر دادگستر، تهران

20  کوچکی پور، علی‌اکبر(1372)، حقوق پدید‌آورنده آثار ادبی و هنری، فصلنامه مصباح، ش 7

21  گرجی، ابوالقاسم(1371)، حقوق معنوی و حکم آن، خبرنامه انفورماتیک، ش4-3

22  مشیریان، محمد (1339)، حق مؤلف و حقوق تطبیقی، رساله دکتری، دانشگاه تهران

23  میرحسینی، حسن (1384)، مقدمه‌ای بر حقوق مالکیت معنوی، نشر میزان، تهران

24  نودهی، محسن (1381)، حقوق مالکیت معنوی یا تهدید مالکیت فکری، نشریه پگاه حوزه، ش63

25    واعظی نژاد، صغرا (1381)، سازمان جهانی مالکیت معنوی (وایپو)،فصلنامه کتاب‌های اسلامی، ش8

26Blakeney, Michael; Trade Related Aspects of Intellectual Property Rights: London: Sweet & Maxwell

27.kallinikou, Dionyssia; “protection of traditional cultural expressions or expressions of intellectual property” : university of Athens press

28.Merges, Robert; Contracting into Liability Rules: Intellectual Property Right and Collective Rights Organization: California law Review

29.National Association of College Stores,Inc ;Questions & Answers on Copyright for the Campus Community,

30.Terri, janke, ” proposals for the recognition and protection of indigenous cultural and intellectual property”, Sydney,Australian institute of Aboriginal and torres strait islander studies,

31.Tina Hart & Linda Fazzani ; Intellectual Property Law , American university-washington college of Law ,

32.Wipo Copyright Treaty

[1] . کارشناس ارشد حقوق جزا و جرم‌شناسی و مربی دانشگاه پیام نور کرمان

[2] . مالکیت ادبی و هنری به دو حوزه حقوق مؤلف (همان کپی رایت که در کامن لو،

چکیده

کپی رایت (حق تکثیر ) بر گرفته از پیمان برن برای حمایت از دارایی علمی ، ادبی هنری است پیمان برن تاکنون بارها مورد تجدید نظر قرار گرفته است و از سال 1967 مدیریت آن بر عهده سازمان جهانی حمایت از حقوق مایملک معنوی (WIPO) قرار گرفته است

کپی رایت حقی است که به موجب آن به پدید آورنده اثر ادبی اجازه داده می شود که نسبت به انتشار و فروش اثر ادبی، هنری و یا علمی خویش با پشتوانه حمایتی که از سوی مقنن نسبت به او صورت می گیرد، تصمیم بگیرد، برخورداری از این حق در حالی است که مالک اثر دغدغه آن را ندارد که دیگران حقوق مادی واخلاقی او را زیر پا می نهند و او را از داشتن این حقوق مسلم محروم می سازند. از این رو کپی رایت تمهیدی قانونی است که برای حمایت از حقوق مادی و مالی پدید آورندگان یا تولید کنندگان آثار ادبی، هنری و علمی طرح و پایه ریزی شده است

مقدمه

حق نشر، حق تکثیر یا کپی رایت (به انگلیسیCOPYRIght) ، مجموعه ای از حقوق انحصاری است که به ناشر یاپدید آورنده یک اثر اصل و منحصر به فرد تعلق می گیرد و حقوقی از قبیل نشر، تکثیر و الگوبرداری از اثر را شامل می شود. در بیشتر حوزه های قضایی، حق نشر از آغاز پدید آمدن یک اثر به آن تعلق می گیرد و نیازی به ثبت اثر نیست. معادل این حق در نظام های حقوقی پیرو حقوق مدرن حق مؤلف است

دارندگان حق تکثیر برای کنترل و دیگر بهره برداری ها از آثار خود برای زمان مشخصی حقوق قانونی و انحصاری دارند و بعد از آن اثر وارد مالکیت  عمومی می شود. هر گونه استفاده و بهره برداری از این آثار منوط به دریافت اجازه از ناشر یا پدید آورنده آن آثار می باشد استفاده در شرایطی که طبق قانون محدودیت یا استثنایی وجود دارد، مانند استفاده منصفانه ، به دریافت اجازه از دارنده حق تکثیر نیاز ندارد. دارنده حق تکثیر می تواند حقوق خود را به شخص دیگری منتقل کند.[1]

تاریخچه

تاریخچه حق تکثیر با حقوق انحصاری و امتیازات چاپ کتاب آغاز شد، اساسنامه آن در سال 1709 که از آن ملکه بریتانیای کبیر نام خود را گرفته است، اولین اساسنامه حق تکثیر است. در ابتدا حق تکثیر شامل تکثیر کتاب ها می شد، با گذر زمان محدودیت های دیگر از قبیل ترجمه و آثار اشتقاقی به آن اضافه شد

ایران

تاریخچه قانون حق تکثیر در ایران مربوط می شود به قانون ثبت علائم تجاری که در سال 1304 تصویب شد[2]

و در سال1348 قانون حمایت حقوق مؤلفان و مصنفان و هنرمندان به عنوان بدنه اصلی حق تکثیر در ایران تصویب شد. در ایران قانون حق تکثیر هیچگاه به درستی اجرا نشده است

فصل اول

قوانین بین المللی حق تکثیر

چیزی به نام حق «حق نشر بین الملل»که به صورت خودکار نوشته های نویسندگان را در سراسر جهان محافظت کند ، وجود ندارد. محافظت در مقابل استفاده در هر کشوری به قوانین ملی آن کشور بستگی دارد. با این وجود بیشتر کشورها برای آثار خارجی تحت شرایط خاص، محافظت هایی فراهم می کنند که تا حد زیادی به وسیله معاهدات و کنوانسیون های  بین المللی حق نشر ساده شده است. دو کنوانسیون مهم در این زمینه وجود دارند، یکی کنوانسیون برن برای حمایت از آثار ادبی و هنری و دیگری کنوانسیون جهانی حق نشر (به انگلیسی:ucc)

با این همه، کشورهایی وجود دارند که برای کارهای خارجی، محافظت حق نشر کمی ارائه  نمی دهند

مبحث اول-کنوانسیون برن برای حمایت از آثار ادبی و هنری

بند اول- کشور های عضو کنوانسیون برن

نوشتار اصلی: کنوانسیون برن برای حمایت از آثار ادبی و هنری، که معمولاً به نام کنوانسیون برن شناخته می شود، یک موافقتنامه بین المللی در خصوص حق تکثیر است که اولین بار در شهر برن در سوئیس در سپتامبر سال1886 ( شهریور1265 شمسی) تصویب شد

کنوانسیون برن[3]کشورهای امضاکننده معاهده را(که درمتن معاهده به نام «کشورهای عضو اتحادیه [4]شناخته شده اند)ملزم می کند که آثار پدید آورندگان سایر کشورهای امضاکننده را هم چون آثار پدید آورندگان تبعه خود مورد حمایت کپی رایت قرار دهد

این پدیدآورنده کسی است که دارای تابعیت یکی از کشورهای عضو باشد و اگر دارای چنین تابعیتی نیست، اثر خود را برای نخستین بار در یکی از کشورهای عضو اتحادیه منتشر می کند و یا اقامتگاه وی در یکی از کشورهای عضو اتحادیه است[5]

بند دوم- ایران و حق تکثیر

در ایران مجموعه ای از قوانین، قانون حق تکثیر را تشکیل می دهند، از جمله قانون حکایت از حقوق مؤلفان و مصنفان و هنرمندان[6]مصوب1348، قانون ترجمه و تکثیر کتب و نشریات و آثار صوتی[7]مصوب1352،قانون حمایت از حقوق پدید آورندگان نرم افزارهای یارانه ای[8]مصوب 1379 و آیین نامه اجرایی آن مصوب 1383، قانون ثبت اختراعات ، طرح های صنعتی و علائم تجاری[9] و مواد 62 ،63، 74 قانون تجارت الکترونیکی[10]

ایران در سال2001 عضو سازمان جهانی مالکیت فکری است[11]. و تا به حال تعدادی از پیمان های مربوط به مالکیت فکری را پذیرفته است. ایران در سال1380 به پیمان مادرید برای ثبت بین المللی علائم ملحق شد[12]ولی عضو کنوانسیون برن و هیچ یک از کنوانسیون های بین المللی مربوط به حق تکثیر نیست و در سازمان تجارت جهانی تنها ناظر است[13]  و به موافقتنامه  تریپس پیوسته است ، به همین علت آثار پدید آمده در ایران به وسیله افراد مقیم در کشورهای دیگر مانند آمریکا محافظت نمی شود. از این رو در صورت تمایل یا نیاز به ثبت هر گونه مالکیت معنوی می بایست هر فرد جداگانه در آن کشورها اقدام به ثبت کپی رایت آثار و محصولات یا علامت تجاری شرکت خود نماید

در سال1390 پیش نویس لایحه جامع حمایت از حقوق مالکیت ادبی و هنری و حقوق مرتبط از سوی وزارت فرهنگ و ارشاد اسلامی به دولت تقدیم شد[14]که در صورت تصویب جایگزین قوانین فعلی حق تکثیر ایران خواهد شد، در این پیش نویس، مدت حمایت حقوق پدید آورندگان از 30 سال به 50 سال افزایش یافته است[15]

[1] الستی،ساناز،حقوق کیفری مالکیت ادبی وهنری، نشر میزان، تهران

[2] الماسی، نجارعلیو بهنام حبیبی، جلوه های فولکور و سیستم های حقوق موجود، نامه مفید، ش

[3] پور محمدی،شیما، حقوق اجراکنندگان، تولید کنندگان آثار صوتی و سازمان های پخش رادیو تلویزیونی، پایان نامه دوره کارشناسی ارشد حقوق خصوصی

[4] حضرتی شاهین دژ،صمد،مطالعه تطبیقی حقوق معنوی مؤلف، فصلنامه پژوهشی دانشگاه امام صادق،ش

[5] جعفر زاده ، میرقاسم،درآمدی برح آفرینش های فکری، پلی کپی دانشگاه حقوق ، دانشگاه شهید بهشتی

[6] شفیعی شکیب، مرتضی ،حق مؤلف، قوانین و مقررات ملی وبین الملل، خانه کتاب، تهران

[7] شورایعالی انفورماتیک کشور، حقوق پدیدآورندگان نرم افزار هایکامپیوتری، سازمان برنامه و بودجه ، تهران

[8] صادقی نشاط،امیر، حمایت حقوق پدیدآورندگان نرم افزارهای کامپوتری، انتشارات سازمان برنامه و بودجه

[9] صالحی، جواد، کپی رایت و تعامل آن با مالکیت فکری، تعالیح ،ش18

[10] صالحی، جواد، کپی رایت دربستر قانون و تعامل آن بامبانی فقهی ، دادرسی،ش68

[11] صفایی، حسین،مقالاتی درباره حقوق مدنی وتطبیقی، نشر میزان ، تهران

[12] کاتوزیان، ناصر، دوره مقدماتی حقوق مدنی، اموال و مالکیت، نشر دادگستر، تهران

[13] عبادی، شیرین، حقوق ادبی وهنری، نشر سرچشمه ، تهران

[14] میرحسینی، حسن، مقدمه ای برح مالکیت معنوی، نشر میزان ، تهران

[15] واعظی نژاد،صغری، سازمان جهانی مالکیت معنوی(وایپو)، فصلنامه کتاب های اسلامی، ش8


برای دریافت پروژه اینجا کلیک کنید

|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
نویسنده : علی
تاریخ : جمعه 6 فروردين 1395